Discrete-type Approximations for Non-Markovian Optimal Stopping Problems: Part II

被引:0
|
作者
Sérgio C. Bezerra
Alberto Ohashi
Francesco Russo
Francys de Souza
机构
[1] Universidade Federal da Paraíba,Departamento de Computação Científica
[2] Rua dos Escoteiros,Departamento de Matemática
[3] Universidade de Brasília,ENSTA ParisTech
[4] Unité de Mathématiques Appliquées,Instituto de Matemática, Estatística e Computação Científica
[5] Universidade de Campinas,undefined
关键词
Optimal stopping; Stochastic optimal control; Monte Carlo methods; Primary: 93E20; Secondary: 60H30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a Longstaff-Schwartz-type algorithm for optimal stopping time problems based on the Brownian motion filtration. The algorithm is based on Leão et al. (??2019) and, in contrast to previous works, our methodology applies to optimal stopping problems for fully non-Markovian and non-semimartingale state processes such as functionals of path-dependent stochastic differential equations and fractional Brownian motions. Based on statistical learning theory techniques, we provide overall error estimates in terms of concrete approximation architecture spaces with finite Vapnik-Chervonenkis dimension. Analytical properties of continuation values for path-dependent SDEs and concrete linear architecture approximating spaces are also discussed.
引用
收藏
页码:1221 / 1255
页数:34
相关论文
共 50 条