Discrete-type approximations for non-Markovian optimal stopping problems: Part I

被引:3
|
作者
Leao, Dorival [1 ]
Ohashi, Alberto [2 ,3 ]
Russo, Francesco [4 ]
机构
[1] Estatcamp, Rua Maestro Joao Seppe 900, BR-13561180 Sao Carlos, SP, Brazil
[2] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[3] Univ Fed Paraiba, Joao Pessoa, Paraiba, Brazil
[4] ENSTA ParisTech, Unite Math Appl, 828 Blvd Marechaux, F-91120 Palaiseau, France
关键词
Optimal stopping; stochastic optimal control; fractional Brownian motion; STOCHASTIC VOLATILITY; QUANTIZATION ALGORITHM; TIME APPROXIMATION; BROWNIAN-MOTION; SIMULATION;
D O I
10.1017/jpr.2019.57
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a discrete-type approximation scheme to solve continuous-time optimal stopping problems based on fully non-Markovian continuous processes adapted to the Brownian motion filtration. The approximations satisfy suitable variational inequalities which allow us to construct $\varepsilon$-optimal stopping times and optimal values in full generality. Explicit rates of convergence are presented for optimal values based on reward functionals of path-dependent stochastic differential equations driven by fractional Brownian motion. In particular, the methodology allows us to design concrete Monte Carlo schemes for non-Markovian optimal stopping time problems as demonstrated in the companion paper by Bezerra et al.
引用
收藏
页码:981 / 1005
页数:25
相关论文
共 50 条
  • [1] Discrete-type Approximations for Non-Markovian Optimal Stopping Problems: Part II
    Bezerra, Sergio C.
    Ohashi, Alberto
    Russo, Francesco
    de Souza, Francys
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2020, 22 (03) : 1221 - 1255
  • [2] Discrete-type Approximations for Non-Markovian Optimal Stopping Problems: Part II
    Sérgio C. Bezerra
    Alberto Ohashi
    Francesco Russo
    Francys de Souza
    [J]. Methodology and Computing in Applied Probability, 2020, 22 : 1221 - 1255
  • [3] Representation of non-Markovian optimal stopping problems by constrained BSDEs with a single jump
    Fuhrman, Marco
    Huyen Pham
    Zeni, Federica
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2016, 21
  • [4] Convergence Guarantees for Discrete Mode Approximations to Non-Markovian Quantum Baths
    Trivedi, Rahul
    Malz, Daniel
    Cirac, J. Ignacio
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (25)
  • [5] Phase-Type Approximations for Non-Markovian Systems: A Case Study
    Ciobanu, Gabriel
    Rotaru, Armand
    [J]. SOFTWARE ENGINEERING AND FORMAL METHODS, SEFM 2014, 2015, 8938 : 323 - 334
  • [6] Non-Markovian discrete qubit dynamics
    Jun Sun
    Yong-Nan Sun
    Chuan-Feng Li
    Guang-Can Guo
    Kimmo Luoma
    Jyrki Piilo
    [J]. Science Bulletin, 2016, 61 (13) : 1031 - 1036
  • [7] Non-Markovian discrete qubit dynamics
    Sun, Jun
    Sun, Yong-Nan
    Li, Chuan-Feng
    Guo, Guang-Can
    Luoma, Kimmo
    Piilo, Jyrki
    [J]. SCIENCE BULLETIN, 2016, 61 (13) : 1031 - 1036
  • [8] Non-Markovian Optimal Sideband Cooling
    Triana, Johan F.
    Pachona, Leonardo A.
    [J]. LATIN AMERICAN SCHOOL OF PHYSICS MARCOS MOSHINSKY (ELAF2017) - QUANTUM CORRELATIONS, 2018, 1950
  • [9] Weak-coupling approximations in non-Markovian transport
    Zedler, Philipp
    Schaller, Gernot
    Kiesslich, Gerold
    Emary, Clive
    Brandes, Tobias
    [J]. PHYSICAL REVIEW B, 2009, 80 (04):
  • [10] Optimal management of non-Markovian biological populations
    Williams, Byron K.
    [J]. ECOLOGICAL MODELLING, 2007, 200 (1-2) : 234 - 242