Osmotin attenuates LPS-induced neuroinflammation and memory impairments via the TLR4/NFκB signaling pathway

被引:0
|
作者
Haroon Badshah
Tahir Ali
Myeong Ok Kim
机构
[1] College of Natural Sciences (RINS),Division of Applied Life Science (BK 21)
[2] Gyeongsang National University,undefined
来源
Scientific Reports | / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Toll-like receptor 4 (TLR4) signaling in the brain mediates autoimmune responses and induces neuroinflammation that results in neurodegenerative diseases, such as Alzheimer’s disease (AD). The plant hormone osmotin inhibited lipopolysaccharide (LPS)-induced TLR4 downstream signaling, including activation of TLR4, CD14, IKKα/β, and NFκB, and the release of inflammatory mediators, such as COX-2, TNF-α, iNOS, and IL-1β. Immunoprecipitation demonstrated colocalization of TLR4 and AdipoR1 receptors in BV2 microglial cells, which suggests that osmotin binds to AdipoR1 and inhibits downstream TLR4 signaling. Furthermore, osmotin treatment reversed LPS-induced behavioral and memory disturbances and attenuated LPS-induced increases in the expression of AD markers, such as Aβ, APP, BACE-1, and p-Tau. Osmotin improved synaptic functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95, SNAP-25, and syntaxin-1. Osmotin also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1 and caspase-3. Overall, our studies demonstrated that osmotin prevented neuroinflammation-associated memory impairment and neurodegeneration and suggest AdipoR1 as a therapeutic target for the treatment of neuroinflammation and neurological disorders, such as AD.
引用
收藏
相关论文
共 50 条
  • [41] LPS Preconditioning Attenuates Apoptosis Mechanism by Inhibiting NF-κB and Caspase-3 Activity: TLR4 Pre-activation in the Signaling Pathway of LPS-Induced Neuroprotection
    Sangaran, Pushpa Gandi
    Ibrahim, Zaridatul Aini
    Chik, Zamri
    Mohamed, Zahurin
    Ahmadiani, Abolhassan
    MOLECULAR NEUROBIOLOGY, 2021, 58 (05) : 2407 - 2422
  • [42] KAE Alleviates LPS-induced Neuroinflammation in the Striatum of Mice via Down-regulating TLR4/MyD88 Signaling Pathway
    YANG Ying-Lin
    CHENG Xiao
    LI Wei-Han
    LIU Man
    王月华
    杜冠华
    神经药理学报, 2018, 8 (02) : 30 - 30
  • [43] MicroRNA-223 attenuates LPS-induced inflammation in an acute lung injury model via the NLRP3 inflammasome and TLR4/NF-B signaling pathway via RHOB
    Yan, Yurong
    Lu, Kexin
    Ye, Ting
    Zhang, Zongwang
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2019, 43 (03) : 1467 - 1477
  • [44] Hydroxychloroquine attenuates neuroinflammation following traumatic brain injury by regulating the TLR4/NF-κB signaling pathway
    Hu, Jian
    Wang, Xue
    Chen, Xiongjian
    Fang, Yani
    Chen, Kun
    Peng, Wenshuo
    Wang, Zhengyi
    Guo, Kaiming
    Tan, Xianxi
    Liang, Fei
    Lin, Li
    Xiong, Ye
    JOURNAL OF NEUROINFLAMMATION, 2022, 19 (01)
  • [45] Hydroxychloroquine attenuates neuroinflammation following traumatic brain injury by regulating the TLR4/NF-κB signaling pathway
    Jian Hu
    Xue Wang
    Xiongjian Chen
    Yani Fang
    Kun Chen
    Wenshuo Peng
    Zhengyi Wang
    Kaiming Guo
    Xianxi Tan
    Fei Liang
    Li Lin
    Ye Xiong
    Journal of Neuroinflammation, 19
  • [46] Erratum to: Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling
    Hua Zhang
    Zhi-min Wu
    Ya-ping Yang
    Aftab Shaukat
    Jing Yang
    Ying-fang Guo
    Tao Zhang
    Xin-ying Zhu
    Jin-xia Qiu
    Gan-zhen Deng
    Dong-mei Shi
    Journal of Zhejiang University-SCIENCE B, 2020, 21 : 341 - 341
  • [47] Erratum to: Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling
    Hua ZHANG
    Zhimin WU
    Yaping YANG
    Aftab SHAUKAT
    Jing YANG
    Yingfang GUO
    Tao ZHANG
    Xinying ZHU
    Jinxia QIU
    Ganzhen DENG
    Dongmei SHI
    Journal of Zhejiang University-Science B(Biomedicine & Biotechnology), 2020, 21 (04) : 341
  • [48] Aloperine suppresses LPS-induced macrophage activation through inhibiting the TLR4/NF-κB pathway
    Yinyin Ye
    Yuwei Wang
    Yanlang Yang
    Liangfei Tao
    Inflammation Research, 2020, 69 : 375 - 383
  • [49] Aloperine suppresses LPS-induced macrophage activation through inhibiting the TLR4/NF-κB pathway
    Ye, Yinyin
    Wang, Yuwei
    Yang, Yanlang
    Tao, Liangfei
    INFLAMMATION RESEARCH, 2020, 69 (04) : 375 - 383
  • [50] Erratum to: Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling
    Hua ZHANG
    Zhi-min WU
    Ya-ping YANG
    Aftab SHAUKAT
    Jing YANG
    Ying-fang GUO
    Tao ZHANG
    Xin-ying ZHU
    Jin-xia QIU
    Gan-zhen DENG
    Dong-mei SHI
    Journal of Zhejiang University-Science B(Biomedicine & Biotechnology), 2020, (04) : 341 - 341