The Ramsey Numbers of Trees Versus Generalized Wheels

被引:0
|
作者
Longqin Wang
Yaojun Chen
机构
[1] Nanjing University,Department of Mathematics
[2] Jiangsu Normal University,School of Mathematics and Statistics
来源
Graphs and Combinatorics | 2019年 / 35卷
关键词
Ramsey number; Path; Star; Tree; Generalized wheel;
D O I
暂无
中图分类号
学科分类号
摘要
For two given graphs G1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_1$$\end{document} and G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_2$$\end{document}, the Ramsey number R(G1,G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(G_1,G_2)$$\end{document} is the smallest integer n such that for any graph G of order n, either G contains G1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_1$$\end{document} or its complement G¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{G}}$$\end{document} contains G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_2$$\end{document}. Let Pn,Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n, S_n$$\end{document} and Tn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_n$$\end{document} denote a path, a star and a tree of order n, respectively. A generalized wheel, denoted by Ws,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{s,m}$$\end{document}, is the join of a complete graph Ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_s$$\end{document} and a cycle Cm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_m$$\end{document}. In this paper, we show that R(Tn,Ws,4)=(n-1)(s+1)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(T_n,W_{s,4})=(n-1)(s+1)+1$$\end{document} for n≥3,s≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3,s\ge 2$$\end{document} and R(Tn,Ws,5)=(n-1)(s+2)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(T_n,W_{s,5})=(n-1)(s+2)+1$$\end{document} for n≥3,s≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3,s\ge 1$$\end{document}. These generalize some known results on Ramsey numbers for a tree versus a wheel.
引用
收藏
页码:189 / 193
页数:4
相关论文
共 50 条
  • [1] The Ramsey Numbers of Trees Versus Generalized Wheels
    Wang, Longqin
    Chen, Yaojun
    GRAPHS AND COMBINATORICS, 2019, 35 (01) : 189 - 193
  • [2] The Ramsey Numbers of Trees Versus Generalized 6-Wheels or Generalized 7-Wheels
    Wang, Longqin
    GRAPHS AND COMBINATORICS, 2022, 38 (05)
  • [3] The Ramsey Numbers of Trees Versus Generalized 6-Wheels or Generalized 7-Wheels
    Longqin Wang
    Graphs and Combinatorics, 2022, 38
  • [4] THE RAMSEY NUMBERS OF LARGE TREES VERSUS WHEELS
    Zhu, D.
    Zhang, L.
    Li, D.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (04) : 879 - 880
  • [5] On Ramsey Numbers for Trees Versus Wheels of Five or Six Vertices
    E.T. Baskoro
    S.M. Surahmat
    M. Nababan
    Graphs and Combinatorics, 2002, 18 : 717 - 721
  • [6] On Ramsey numbers for trees versus wheels of five or six vertices
    Baskoro, ET
    Surahmat
    Nababan, SM
    Miller, M
    GRAPHS AND COMBINATORICS, 2002, 18 (04) : 717 - 721
  • [7] ON GENERALIZED RAMSEY NUMBERS FOR TREES
    BIERBRAUER, J
    BRANDIS, A
    COMBINATORICA, 1985, 5 (02) : 95 - 107
  • [8] The Ramsey numbers of paths versus wheels
    Chen, YJ
    Zhang, YQ
    Zhang, KM
    DISCRETE MATHEMATICS, 2005, 290 (01) : 85 - 87
  • [9] On Ramsey numbers for paths versus wheels
    Salman, A. N. M.
    Broersma, H. J.
    DISCRETE MATHEMATICS, 2007, 307 (7-8) : 975 - 982
  • [10] The Ramsey numbers of stars versus wheels
    Chen, YJ
    Zhang, YQ
    Zhang, KM
    EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (07) : 1067 - 1075