THE RAMSEY NUMBERS OF LARGE TREES VERSUS WHEELS

被引:0
|
作者
Zhu, D. [1 ]
Zhang, L. [2 ]
Li, D. [2 ]
机构
[1] Southeast Univ, Sch Econ & Management, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Sch Management & Engn, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ramsey number; tree; wheel; R(T-N; W-6);
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For two given graphs G(1) and G(2), the Ramsey number R(G(1), G(2)) is the smallest integer n such that for any graph G of order n, either G contains G(1) or the complement of G contains G(2). Let T-n denote a tree of order n and W-m a wheel of order m + 1. To the best of our knowledge, only R(T-n, W-m) with small wheels are known. In this paper, we show that R(T-m, W-m) = 3n - 2 for odd m with n > 756m(10).
引用
收藏
页码:879 / 880
页数:2
相关论文
共 50 条
  • [1] The Ramsey Numbers of Trees Versus Generalized Wheels
    Longqin Wang
    Yaojun Chen
    Graphs and Combinatorics, 2019, 35 : 189 - 193
  • [2] The Ramsey Numbers of Trees Versus Generalized Wheels
    Wang, Longqin
    Chen, Yaojun
    GRAPHS AND COMBINATORICS, 2019, 35 (01) : 189 - 193
  • [3] The Ramsey numbers of large cycles versus wheels
    Surahmat
    Baskoro, E. T.
    Tomescu, Ioan
    DISCRETE MATHEMATICS, 2006, 306 (24) : 3334 - 3337
  • [4] On Ramsey Numbers for Trees Versus Wheels of Five or Six Vertices
    E.T. Baskoro
    S.M. Surahmat
    M. Nababan
    Graphs and Combinatorics, 2002, 18 : 717 - 721
  • [5] On Ramsey numbers for trees versus wheels of five or six vertices
    Baskoro, ET
    Surahmat
    Nababan, SM
    Miller, M
    GRAPHS AND COMBINATORICS, 2002, 18 (04) : 717 - 721
  • [6] The Ramsey Numbers of Large cycles Versus Odd Wheels
    E. T. Surahmat
    Ioan Baskoro
    Graphs and Combinatorics, 2008, 24 : 53 - 58
  • [7] The Ramsey numbers of large cycles versus odd wheels
    Surahmat
    Baskoro, E. T.
    Tomescu, Ioan
    GRAPHS AND COMBINATORICS, 2008, 24 (01) : 53 - 58
  • [8] On Ramsey Numbers of Short Paths versus Large Wheels
    Zhang, Yunqing
    ARS COMBINATORIA, 2008, 89 : 11 - 20
  • [9] The Ramsey Numbers of Trees Versus Generalized 6-Wheels or Generalized 7-Wheels
    Wang, Longqin
    GRAPHS AND COMBINATORICS, 2022, 38 (05)
  • [10] The Ramsey Numbers of Trees Versus Generalized 6-Wheels or Generalized 7-Wheels
    Longqin Wang
    Graphs and Combinatorics, 2022, 38