THE RAMSEY NUMBERS OF LARGE TREES VERSUS WHEELS

被引:0
|
作者
Zhu, D. [1 ]
Zhang, L. [2 ]
Li, D. [2 ]
机构
[1] Southeast Univ, Sch Econ & Management, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Sch Management & Engn, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Ramsey number; tree; wheel; R(T-N; W-6);
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For two given graphs G(1) and G(2), the Ramsey number R(G(1), G(2)) is the smallest integer n such that for any graph G of order n, either G contains G(1) or the complement of G contains G(2). Let T-n denote a tree of order n and W-m a wheel of order m + 1. To the best of our knowledge, only R(T-n, W-m) with small wheels are known. In this paper, we show that R(T-m, W-m) = 3n - 2 for odd m with n > 756m(10).
引用
收藏
页码:879 / 880
页数:2
相关论文
共 50 条
  • [31] Ramsey numbers of trees and unicyclic graphs versus fans
    Brennan, Matthew
    DISCRETE MATHEMATICS, 2017, 340 (05) : 969 - 983
  • [32] Ramsey Numbers of Trees Versus Multiple Copies of Books
    Guo, Xiao-bing
    Hu, Si-nan
    Peng, Yue-jian
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (02): : 347 - 357
  • [33] Ramsey Numbers of Stripes Versus Trees and Unicyclic Graphs
    Hu, Si-Nan
    Peng, Yue-Jian
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2025, 13 (01) : 297 - 312
  • [34] RAMSEY NUMBERS FOR TREES
    Sun, Zhi-Hong
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (01) : 164 - 176
  • [35] Star-critical Ramsey Numbers of Wheels Versus Odd Cycles
    Yu-chen LIU
    Yao-jun CHEN
    Acta Mathematicae Applicatae Sinica, 2022, 38 (04) : 916 - 924
  • [36] Star-critical Ramsey Numbers of Wheels Versus Odd Cycles
    Liu, Yu-chen
    Chen, Yao-jun
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (04): : 916 - 924
  • [37] Star-critical Ramsey Numbers of Wheels Versus Odd Cycles
    Yu-chen Liu
    Yao-jun Chen
    Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 916 - 924
  • [38] Stability and Ramsey numbers for cycles and wheels
    Sanhueza-Matamala, Nicolas
    DISCRETE MATHEMATICS, 2016, 339 (05) : 1557 - 1565
  • [39] The Ramsey Numbers for Trees of Large Maximum Degree Versus the Wheel Graph W8
    Chng, Zhi Yee
    Britz, Thomas
    Tan, Ta Sheng
    Wong, Kok Bin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (04)
  • [40] Ramsey numbers of bounded degree trees versus general graphs
    Montgomery, Richard
    Pavez-Signe, Matias
    Yan, Jun
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2025, 173 : 102 - 145