The Ramsey Numbers of Trees Versus Generalized Wheels

被引:0
|
作者
Longqin Wang
Yaojun Chen
机构
[1] Nanjing University,Department of Mathematics
[2] Jiangsu Normal University,School of Mathematics and Statistics
来源
Graphs and Combinatorics | 2019年 / 35卷
关键词
Ramsey number; Path; Star; Tree; Generalized wheel;
D O I
暂无
中图分类号
学科分类号
摘要
For two given graphs G1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_1$$\end{document} and G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_2$$\end{document}, the Ramsey number R(G1,G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(G_1,G_2)$$\end{document} is the smallest integer n such that for any graph G of order n, either G contains G1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_1$$\end{document} or its complement G¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{G}}$$\end{document} contains G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_2$$\end{document}. Let Pn,Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n, S_n$$\end{document} and Tn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_n$$\end{document} denote a path, a star and a tree of order n, respectively. A generalized wheel, denoted by Ws,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{s,m}$$\end{document}, is the join of a complete graph Ks\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_s$$\end{document} and a cycle Cm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_m$$\end{document}. In this paper, we show that R(Tn,Ws,4)=(n-1)(s+1)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(T_n,W_{s,4})=(n-1)(s+1)+1$$\end{document} for n≥3,s≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3,s\ge 2$$\end{document} and R(Tn,Ws,5)=(n-1)(s+2)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(T_n,W_{s,5})=(n-1)(s+2)+1$$\end{document} for n≥3,s≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3,s\ge 1$$\end{document}. These generalize some known results on Ramsey numbers for a tree versus a wheel.
引用
收藏
页码:189 / 193
页数:4
相关论文
共 50 条
  • [21] The Ramsey numbers of large cycles versus odd wheels
    Surahmat
    Baskoro, E. T.
    Tomescu, Ioan
    GRAPHS AND COMBINATORICS, 2008, 24 (01) : 53 - 58
  • [22] The Ramsey numbers for cycles versus wheels of even order
    Zhang, Lianmin
    Chen, Yaojun
    Cheng, T. C. Edwin
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (01) : 254 - 259
  • [23] On Ramsey Numbers of Short Paths versus Large Wheels
    Zhang, Yunqing
    ARS COMBINATORIA, 2008, 89 : 11 - 20
  • [24] The Ramsey numbers of paths versus wheels: a complete solution
    Li, Binlong
    Ning, Bo
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):
  • [25] Ramsey numbers of long cycles versus books or wheels
    Shi, Lingsheng
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (03) : 828 - 838
  • [26] Ramsey numbers of stars versus wheels of similar sizes
    Korolova, A
    DISCRETE MATHEMATICS, 2005, 292 (1-3) : 107 - 117
  • [27] Ramsey numbers of trees versus odd cycles
    Brennan, Matthew
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03):
  • [28] Star-Critical Ramsey Numbers of Cycles Versus Wheels
    Yuchen Liu
    Yaojun Chen
    Graphs and Combinatorics, 2021, 37 : 2167 - 2172
  • [29] Ramsey numbers of odd cycles versus larger even wheels
    Alweiss, Ryan
    DISCRETE MATHEMATICS, 2018, 341 (04) : 981 - 989
  • [30] Star-Critical Ramsey Numbers of Cycles Versus Wheels
    Liu, Yuchen
    Chen, Yaojun
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2167 - 2172