On Ramanujan-type congruences for multiplicative functions

被引:0
|
作者
William Craig
Mircea Merca
机构
[1] University of Virginia,Department of Mathematics
[2] University of Craiova,Department of Mathematics
关键词
Congruences; Ramanujan-type congruences; Multiplicative functions; 11A25; 11P83;
D O I
暂无
中图分类号
学科分类号
摘要
The study of Ramanujan-type congruences for functions specific to additive number theory has a long and rich history. Motivated by recent connections between divisor sums and overpartitions via congruences in arithmetic progressions, we investigate the existence and classification of Ramanujan-type congruences for functions in multiplicative number theory.
引用
收藏
相关论文
共 50 条
  • [31] A FURTHER LOOK AT A COMPLETE CHARACTERIZATION OF RAMANUJAN-TYPE CONGRUENCES MODULO 16 FOR OVERPARTITIONS
    Merca, Mircea
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2019, 20 (04): : 329 - 335
  • [32] Ramanujan-type congruences for partition k-tuples with 5-cores
    Saikia, Manjil P.
    Sarma, Abhishek
    Talukdar, Pranjal
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [33] Ramanujan-type congruences for broken 2-diamond partitions modulo 3
    Chen, William Y. C.
    Fan, Anna R. B.
    Yu, Rebecca T.
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (08) : 1553 - 1560
  • [34] Ramanujan-type congruences for broken 2-diamond partitions modulo 3
    William Y. C. Chen
    Anna R. B. Fan
    Rebecca T. Yu
    Science China Mathematics, 2014, 57 : 1553 - 1560
  • [35] Ramanujan-Type Congruences for (l, m)-Regular Bipartitions Modulo 2, 5 and 7
    Palani, Murugan
    Fathima, Syeda Noor
    VIETNAM JOURNAL OF MATHEMATICS, 2024,
  • [36] "DIVERGENT" RAMANUJAN-TYPE SUPERCONGRUENCES
    Guillera, Jesus
    Zudilin, Wadim
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (03) : 765 - 777
  • [37] ZEROS OF RAMANUJAN-TYPE POLYNOMIALS
    Maji, Bibekananda
    Sarkar, Tithi
    arXiv, 2023,
  • [38] Ramanujan-type congruences for l-regular partitions modulo 3, 5, 11 and 13
    Jin, Hai-Tao
    Zhang, Li
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (08) : 1995 - 2006
  • [39] Ramanujan-type continuous measures for biorthogonal q-rational functions
    Atakishiyev, NM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (02): : 329 - 338
  • [40] Ramanujan-type series for 1/π , revisited
    Ye, Dongxi
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (02): : 350 - 368