Ramanujan-type congruences for broken 2-diamond partitions modulo 3

被引:6
|
作者
Chen, William Y. C. [1 ]
Fan, Anna R. B. [2 ]
Yu, Rebecca T. [2 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] Nankai Univ, Ctr Combinator, LPMC TJKLC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
broken k-diamond partition; modular form; Ramanujan-type congruence; Hecke eigenform; 1-DIAMOND PARTITION; ANDREWS; DIAMONDS;
D O I
10.1007/s11425-014-4846-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of broken k-diamond partitions was introduced by Andrews and Paule. Let Delta (k) (n) denote the number of broken k-diamond partitions of n. Andrews and Paule also posed three conjectures on the congruences of Delta(2)(n) modulo 2, 5 and 25. Hirschhorn and Sellers proved the conjectures for modulo 2, and Chan proved the two cases of modulo 5. For the case of modulo 3, Radu and Sellers obtained an infinite family of congruences for Delta(2)(n). In this paper, we obtain two infinite families of congruences for Delta(2)(n) modulo 3 based on a formula of Radu and Sellers, a 3-dissection formula of the generating function of triangular number due to Berndt, and the properties of the U-operator, the V-operator, the Hecke operator and the Hecke eigenform. For example, we find that Delta(2)(243n + 142) a parts per thousand Delta(2)(243n + 223) a parts per thousand 0 (mod 3). The infinite family of Radu and Sellers and the two infinite families derived in this paper have two congruences in common, namely, Delta(2)(27n + 16) a parts per thousand Delta(2)(27n + 25) a parts per thousand 0 (mod 3).
引用
收藏
页码:1553 / 1560
页数:8
相关论文
共 50 条
  • [1] Ramanujan-type congruences for broken 2-diamond partitions modulo 3
    CHEN William Y.C.
    FAN Anna R.B.
    YU Rebecca T.
    Science China(Mathematics), 2014, 57 (08) : 1553 - 1560
  • [2] Ramanujan-type congruences for broken 2-diamond partitions modulo 3
    William Y. C. Chen
    Anna R. B. Fan
    Rebecca T. Yu
    Science China Mathematics, 2014, 57 : 1553 - 1560
  • [3] Broken 2-diamond partitions modulo 5
    Hirschhorn, Michael D.
    RAMANUJAN JOURNAL, 2018, 45 (02): : 517 - 520
  • [4] More infinite families of congruences modulo 5 for broken 2-diamond partitions
    Xia, Ernest X. W.
    JOURNAL OF NUMBER THEORY, 2017, 170 : 250 - 262
  • [5] Ramanujan-type congruences modulo 4 for partitions into distinct parts
    Merca, Mircea
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (03): : 185 - 199
  • [6] Broken 2-diamond partitions modulo 5
    Michael D. Hirschhorn
    The Ramanujan Journal, 2018, 45 : 517 - 520
  • [7] RAMANUJAN-TYPE CONGRUENCES FOR OVERPARTITIONS MODULO 3
    Zhang, Li
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (06) : 2257 - 2264
  • [8] Ramanujan-type congruences for l-regular partitions modulo 3, 5, 11 and 13
    Jin, Hai-Tao
    Zhang, Li
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (08) : 1995 - 2006
  • [9] Ramanujan-type congruences for overpartitions modulo 16
    Chen, William Y. C.
    Hou, Qing-Hu
    Sun, Lisa H.
    Zhang, Li
    RAMANUJAN JOURNAL, 2016, 40 (02): : 311 - 322
  • [10] Ramanujan-type congruences for overpartitions modulo 5
    Chen, William Y. C.
    Sun, Lisa H.
    Wang, Rong-Hua
    Zhang, Li
    JOURNAL OF NUMBER THEORY, 2015, 148 : 62 - 72