Ramanujan-type congruences for broken 2-diamond partitions modulo 3

被引:6
|
作者
Chen, William Y. C. [1 ]
Fan, Anna R. B. [2 ]
Yu, Rebecca T. [2 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] Nankai Univ, Ctr Combinator, LPMC TJKLC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
broken k-diamond partition; modular form; Ramanujan-type congruence; Hecke eigenform; 1-DIAMOND PARTITION; ANDREWS; DIAMONDS;
D O I
10.1007/s11425-014-4846-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of broken k-diamond partitions was introduced by Andrews and Paule. Let Delta (k) (n) denote the number of broken k-diamond partitions of n. Andrews and Paule also posed three conjectures on the congruences of Delta(2)(n) modulo 2, 5 and 25. Hirschhorn and Sellers proved the conjectures for modulo 2, and Chan proved the two cases of modulo 5. For the case of modulo 3, Radu and Sellers obtained an infinite family of congruences for Delta(2)(n). In this paper, we obtain two infinite families of congruences for Delta(2)(n) modulo 3 based on a formula of Radu and Sellers, a 3-dissection formula of the generating function of triangular number due to Berndt, and the properties of the U-operator, the V-operator, the Hecke operator and the Hecke eigenform. For example, we find that Delta(2)(243n + 142) a parts per thousand Delta(2)(243n + 223) a parts per thousand 0 (mod 3). The infinite family of Radu and Sellers and the two infinite families derived in this paper have two congruences in common, namely, Delta(2)(27n + 16) a parts per thousand Delta(2)(27n + 25) a parts per thousand 0 (mod 3).
引用
收藏
页码:1553 / 1560
页数:8
相关论文
共 50 条
  • [41] Newman’s identity and infinite families of congruences modulo 7 for broken 3-diamond partitions
    Olivia X. M. Yao
    Ya Juan Wang
    The Ramanujan Journal, 2017, 43 : 619 - 631
  • [42] Newman's identity and infinite families of congruences modulo 7 for broken 3-diamond partitions
    Yao, Olivia X. M.
    Wang, Ya Juan
    RAMANUJAN JOURNAL, 2017, 43 (03): : 619 - 631
  • [43] RAMANUJAN-TYPE CONGRUENCES FOR SEVERAL PARTITION FUNCTIONS
    Zhang, Wenlong
    Wang, Chun
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (03) : 641 - 652
  • [44] Relations among Ramanujan-type congruences I
    Raum, Martin
    ADVANCES IN MATHEMATICS, 2022, 409
  • [45] Ramanujan-type congruences for certain generating functions
    Shi-Chao Chen
    Lithuanian Mathematical Journal, 2013, 53 : 381 - 390
  • [46] Ramanujan-type congruences for certain generating functions
    Chen, Shi-Chao
    LITHUANIAN MATHEMATICAL JOURNAL, 2013, 53 (04) : 381 - 390
  • [47] Ramanujan-type congruences modulo 8 for 7-and 23-core partition functions
    Xia, Ernest X. W.
    Yao, Olivia X. M.
    RAMANUJAN JOURNAL, 2018, 47 (01): : 221 - 235
  • [48] Elementary proofs of Radu and Sellers’ results for broken 2-diamond partitions
    Bernard L. S. Lin
    Andrew Y. Z. Wang
    The Ramanujan Journal, 2015, 37 : 291 - 297
  • [49] Ramanujan-type congruences modulo 8 for 7- and 23-core partition functions
    Ernest X. W. Xia
    Olivia X. M. Yao
    The Ramanujan Journal, 2018, 47 : 221 - 235
  • [50] Elementary proofs of Radu and Sellers' results for broken 2-diamond partitions
    Lin, Bernard L. S.
    Wang, Andrew Y. Z.
    RAMANUJAN JOURNAL, 2015, 37 (02): : 291 - 297