Quantum logic with spin qubits crossing the surface code threshold

被引:0
|
作者
Xiao Xue
Maximilian Russ
Nodar Samkharadze
Brennan Undseth
Amir Sammak
Giordano Scappucci
Lieven M. K. Vandersypen
机构
[1] Delft University of Technology,QuTech
[2] Delft University of Technology,Kavli Institute of Nanoscience
[3] Netherlands Organisation for Applied Scientific Research (TNO),undefined
来源
Nature | 2022年 / 601卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
High-fidelity control of quantum bits is paramount for the reliable execution of quantum algorithms and for achieving fault tolerance—the ability to correct errors faster than they occur1. The central requirement for fault tolerance is expressed in terms of an error threshold. Whereas the actual threshold depends on many details, a common target is the approximately 1% error threshold of the well-known surface code2,3. Reaching two-qubit gate fidelities above 99% has been a long-standing major goal for semiconductor spin qubits. These qubits are promising for scaling, as they can leverage advanced semiconductor technology4. Here we report a spin-based quantum processor in silicon with single-qubit and two-qubit gate fidelities, all of which are above 99.5%, extracted from gate-set tomography. The average single-qubit gate fidelities remain above 99% when including crosstalk and idling errors on the neighbouring qubit. Using this high-fidelity gate set, we execute the demanding task of calculating molecular ground-state energies using a variational quantum eigensolver algorithm5. Having surpassed the 99% barrier for the two-qubit gate fidelity, semiconductor qubits are well positioned on the path to fault tolerance and to possible applications in the era of noisy intermediate-scale quantum devices.
引用
收藏
页码:343 / 347
页数:4
相关论文
共 50 条
  • [31] Threshold-independent method for single-shot readout of spin qubits in semiconductor quantum dots
    Hu, Rui-Zi
    Zhu, Sheng-Kai
    Zhang, Xin
    Zhou, Yuan
    Ni, Ming
    Ma, Rong-Long
    Luo, Gang
    Kong, Zhen-Zhen
    Wang, Gui-Lei
    Cao, Gang
    Li, Hai-Ou
    Guo, Guo-Ping
    CHINESE PHYSICS B, 2023, 33 (01)
  • [32] Threshold-independent method for single-shot readout of spin qubits in semiconductor quantum dots
    胡睿梓
    祝圣凯
    张鑫
    周圆
    倪铭
    马荣龙
    罗刚
    孔真真
    王桂磊
    曹刚
    李海欧
    郭国平
    Chinese Physics B, 2024, 33 (01) : 83 - 88
  • [33] Implementation of quantum logic operations and creation of entanglement between two nuclear spin qubits with constant interaction
    Berman, G. P.
    Brown, G. W.
    Hawley, M. E.
    Kamenev, D. I.
    Tsifrinovich, V. I.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (06) : 975 - 1001
  • [34] Quantum computing with spin qubits in semiconductor structures
    Privman, V
    Mozyrsky, D
    Vagner, ID
    COMPUTER PHYSICS COMMUNICATIONS, 2002, 146 (03) : 331 - 338
  • [35] Quantum and tunneling capacitance in charge and spin qubits
    Mizuta, R.
    Otxoa, R. M.
    Betz, A. C.
    Gonzalez-Zalba, M. F.
    PHYSICAL REVIEW B, 2017, 95 (04)
  • [36] Chirality in quantum computation with spin cluster qubits
    Scarola, VW
    Park, K
    Das Sarma, S
    PHYSICAL REVIEW LETTERS, 2004, 93 (12) : 120503 - 1
  • [37] Semiconductor quantum dots for electron spin qubits
    van der Wiel, WG
    Stopa, M
    Kodera, T
    Hatano, T
    Tarucha, S
    NEW JOURNAL OF PHYSICS, 2006, 8
  • [38] Tailoring quantum error correction to spin qubits
    Hetenyi, Bence
    Wootton, James R.
    PHYSICAL REVIEW A, 2024, 109 (03)
  • [39] Silicon photonic quantum computing with spin qubits
    Yan, Xiruo
    Gitt, Sebastian
    Lin, Becky
    Witt, Donald
    Abdolahi, Mahssa
    Afifi, Abdelrahman
    Azem, Adan
    Darcie, Adam
    Wu, Jingda
    Awan, Kashif
    Mitchell, Matthew
    Pfenning, Andreas
    Chrostowski, Lukas
    Young, Jeff F.
    APL PHOTONICS, 2021, 6 (07)
  • [40] Coupled quantum dots: spin based qubits
    Stavrou, V. N.
    Tsoulos, I. G.
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2021, 721 (01) : 45 - 50