Quantum logic with spin qubits crossing the surface code threshold

被引:0
|
作者
Xiao Xue
Maximilian Russ
Nodar Samkharadze
Brennan Undseth
Amir Sammak
Giordano Scappucci
Lieven M. K. Vandersypen
机构
[1] Delft University of Technology,QuTech
[2] Delft University of Technology,Kavli Institute of Nanoscience
[3] Netherlands Organisation for Applied Scientific Research (TNO),undefined
来源
Nature | 2022年 / 601卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
High-fidelity control of quantum bits is paramount for the reliable execution of quantum algorithms and for achieving fault tolerance—the ability to correct errors faster than they occur1. The central requirement for fault tolerance is expressed in terms of an error threshold. Whereas the actual threshold depends on many details, a common target is the approximately 1% error threshold of the well-known surface code2,3. Reaching two-qubit gate fidelities above 99% has been a long-standing major goal for semiconductor spin qubits. These qubits are promising for scaling, as they can leverage advanced semiconductor technology4. Here we report a spin-based quantum processor in silicon with single-qubit and two-qubit gate fidelities, all of which are above 99.5%, extracted from gate-set tomography. The average single-qubit gate fidelities remain above 99% when including crosstalk and idling errors on the neighbouring qubit. Using this high-fidelity gate set, we execute the demanding task of calculating molecular ground-state energies using a variational quantum eigensolver algorithm5. Having surpassed the 99% barrier for the two-qubit gate fidelity, semiconductor qubits are well positioned on the path to fault tolerance and to possible applications in the era of noisy intermediate-scale quantum devices.
引用
收藏
页码:343 / 347
页数:4
相关论文
共 50 条
  • [21] Quantum computing with spin cluster qubits
    Meier, F
    Levy, J
    Loss, D
    PHYSICAL REVIEW LETTERS, 2003, 90 (04)
  • [22] Controlling Spin Qubits in Quantum Dots
    Engel, Hans-Andreas
    Kouwenhoven, L. P.
    Loss, Daniel
    Marcus, C. M.
    QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 115 - 132
  • [23] Spin qubits in multielectron quantum dots
    Vorojtsov, S
    Mucciolo, ER
    Baranger, HU
    PHYSICAL REVIEW B, 2004, 69 (11)
  • [24] Controlling Spin Qubits in Quantum Dots
    Hans-Andreas Engel
    L. P. Kouwenhoven
    Daniel Loss
    C. M. Marcus
    Quantum Information Processing, 2004, 3 : 115 - 132
  • [25] Spin qubits in graphene quantum dots
    Björn Trauzettel
    Denis V. Bulaev
    Daniel Loss
    Guido Burkard
    Nature Physics, 2007, 3 : 192 - 196
  • [26] Quantum dots and spin qubits in graphene
    Recher, Patrik
    Trauzettel, Bjoern
    NANOTECHNOLOGY, 2010, 21 (30)
  • [27] Erratum to: Spin qubits for quantum simulations
    Xin-hua Peng
    Dieter Suter
    Frontiers of Physics in China, 2010, 5 : 337 - 337
  • [28] Spin qubits: spin relaxation in coupled quantum dots
    Stavrou, V. N.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (45)
  • [29] Universal quantum logic in hot silicon qubits
    Petit, L.
    Eenink, H. G. J.
    Russ, M.
    Lawrie, W. I. L.
    Hendrickx, N. W.
    Philips, S. G. J.
    Clarke, J. S.
    Vandersypen, L. M. K.
    Veldhorst, M.
    NATURE, 2020, 580 (7803) : 355 - +
  • [30] Universal quantum logic in hot silicon qubits
    L. Petit
    H. G. J. Eenink
    M. Russ
    W. I. L. Lawrie
    N. W. Hendrickx
    S. G. J. Philips
    J. S. Clarke
    L. M. K. Vandersypen
    M. Veldhorst
    Nature, 2020, 580 : 355 - 359