On the Lax pairs of the continuous and discrete sixth Painlevé equations

被引:0
|
作者
Runliang Lin
Robert Conte
Micheline Musette
机构
[1] F–91191 Gif-sur-Yvette Cedex,Service de physique de l’état condensé (Unité de recherche associée au CNRS no. 2464) CEA–Saclay
[2] Vrije Universiteit Brussel Pleinlaan 2,Dienst Theoretische Natuurkunde
[3] Tsinghua University, Department of Mathematical Sciences
关键词
D O I
10.2991/jnmp.2003.10.s2.10
中图分类号
学科分类号
摘要
Among the recently found discretizations of the sixth Painlevé equation P6, only the one of Jimbo and Sakai admits a discrete Lax pair, which does establish its integrabil-ity. However, a subtle restriction in this Lax pair prevents the possibility to generalize it in order to find the other missing Lax pairs. It happens that the same restriction already exists in the matrix Lax pair of Jimbo and Miwa for the continuous P6. In this preliminary article, we remove this last restriction and give a matrix Lax pair for P6 which is traceless, rational in the dependent and independent variables, holomorphic in the monodromy exponents, with four Fuchsian singularities in the complex plane of the spectral parameter. Its only minor drawback is the presence of the apparent singularity which always exists in the scalar Lax pair.
引用
收藏
页码:107 / 118
页数:11
相关论文
共 50 条
  • [21] Lax pairs and Darboux transformations for Euler equations
    Li, YG
    Yurov, AV
    STUDIES IN APPLIED MATHEMATICS, 2003, 111 (01) : 101 - 113
  • [22] Chaos in PDEs and Lax pairs of Euler equations
    Li, YG
    ACTA APPLICANDAE MATHEMATICAE, 2003, 77 (02) : 181 - 214
  • [23] Chaos in PDEs and Lax Pairs of Euler Equations
    Yanguang (Charles) Li
    Acta Applicandae Mathematica, 2003, 77 : 181 - 214
  • [24] Parameterless discrete Painlevé equations and their Miura relations
    B. Grammaticos
    A. Ramani
    Journal of Nonlinear Mathematical Physics, 2016, 23 : 141 - 149
  • [25] Hierarchies of q-discrete Painlevé equations
    Huda Alrashdi
    Nalini Joshi
    Dinh Thi Tran
    Journal of Nonlinear Mathematical Physics, 2020, 27 : 453 - 477
  • [26] Conservation laws of discrete Lax equations
    Li, Yu-Qi
    Chen, Yong
    Li, Biao
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (13) : 3425 - 3440
  • [27] Quantum Baxter-Belavin R-matrices and multidimensional lax pairs for Painlevé VI
    A. M. Levin
    M. A. Olshanetsky
    A. V. Zotov
    Theoretical and Mathematical Physics, 2015, 184 : 924 - 939
  • [28] On a method for constructing the Lax pairs for nonlinear integrable equations
    Habibullin, I. T.
    Khakimova, A. R.
    Poptsova, M. N.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (03)
  • [29] Scaling invariant Lax pairs of nonlinear evolution equations
    Hickman, Mark
    Hereman, Willy
    Larue, Jennifer
    Goktas, Unal
    APPLICABLE ANALYSIS, 2012, 91 (02) : 381 - 402
  • [30] A Geometrical Description¶of the Discrete Painlevé VI and V Equations
    A. Ramani
    B. Grammaticos
    Y. Ohta
    Communications in Mathematical Physics, 2001, 217 : 315 - 329