Incompatible Coulomb hamiltonian extensions

被引:0
|
作者
G. Abramovici
机构
[1] Université Paris-Saclay,
[2] CNRS,undefined
[3] Laboratoire de Physique des Solides,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We revisit the resolution of the one-dimensional Schrödinger hamiltonian with a Coulomb λ/|x| potential. We examine among its self-adjoint extensions those which are compatible with physical conservation laws. In the one-dimensional semi-infinite case, we show that they are classified on a U(1) circle in the attractive case and on (R,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{(}}{\mathbb{R}},{\boldsymbol{+}}{\boldsymbol{\infty }}{\boldsymbol{)}}$$\end{document} in the repulsive one. In the one-dimensional infinite case, we find a specific and original classification by studying the continuity of eigenfunctions. In all cases, different extensions are incompatible one with the other. For an actual experiment with an attractive potential, the bound spectrum can be used to discriminate which extension is the correct one.
引用
收藏
相关论文
共 50 条
  • [41] Incompatible observables in classical physics: A closer look at measurement in Hamiltonian mechanics
    Theurel, David
    PHYSICAL REVIEW E, 2024, 110 (02)
  • [42] Self-Adjoint Extensions of Dirac Operator with Coulomb Potential
    Gallone, Matteo
    ADVANCES IN QUANTUM MECHANICS: CONTEMPORARY TRENDS AND OPEN PROBLEMS, 2017, 18 : 169 - 185
  • [43] Solvable rational extensions of the Morse and Kepler-Coulomb potentials
    Grandati, Yves
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (10)
  • [44] SCATTERING SOLUTIONS OF BIEDENHARN SYMMETRIC DIRAC-COULOMB HAMILTONIAN
    FRADKIN, DM
    PHYSICAL REVIEW B, 1964, 135 (4B) : 1085 - +
  • [45] Hamiltonian approach to QCD in Coulomb gauge at zero and finite temperature
    Reinhardt, H.
    Burgio, G.
    Campagnari, D.
    Ebadati, E.
    Heffner, J.
    Quandt, M.
    Vastag, P.
    Vogt, H.
    XIITH QUARK CONFINEMENT AND THE HADRON SPECTRUM, 2017, 137
  • [46] Hamiltonian flow in Coulomb gauge Yang-Mills theory
    Leder, Markus
    Pawlowski, Jan M.
    Reinhardt, Hugo
    Weber, Axel
    PHYSICAL REVIEW D, 2011, 83 (02):
  • [47] A HAMILTONIAN APPROACH TO NORMAL MODE-COUPLING IN A COULOMB PLASMA
    SPENCER, RG
    JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (01) : 380 - 384
  • [48] VARIATIONAL REPRESENTATION OF THE DIRAC-COULOMB HAMILTONIAN WITH NO SPURIOUS ROOTS
    GOLDMAN, SP
    PHYSICAL REVIEW A, 1985, 31 (06): : 3541 - 3549
  • [49] Hamiltonian approach to QCD in Coulomb gauge: Deconfinement from confinement
    Reinhardt, H.
    Campagnari, D.
    Heffner, J.
    Acta Physica Polonica B, Proceedings Supplement, 2015, 8 (01) : 233 - 245
  • [50] On the Maximal Excess Charge of the Chandrasekhar–Coulomb Hamiltonian in Two Dimension
    Michael Handrek
    Heinz Siedentop
    Letters in Mathematical Physics, 2013, 103 : 843 - 849