Incompatible Coulomb hamiltonian extensions

被引:0
|
作者
G. Abramovici
机构
[1] Université Paris-Saclay,
[2] CNRS,undefined
[3] Laboratoire de Physique des Solides,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We revisit the resolution of the one-dimensional Schrödinger hamiltonian with a Coulomb λ/|x| potential. We examine among its self-adjoint extensions those which are compatible with physical conservation laws. In the one-dimensional semi-infinite case, we show that they are classified on a U(1) circle in the attractive case and on (R,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{(}}{\mathbb{R}},{\boldsymbol{+}}{\boldsymbol{\infty }}{\boldsymbol{)}}$$\end{document} in the repulsive one. In the one-dimensional infinite case, we find a specific and original classification by studying the continuity of eigenfunctions. In all cases, different extensions are incompatible one with the other. For an actual experiment with an attractive potential, the bound spectrum can be used to discriminate which extension is the correct one.
引用
收藏
相关论文
共 50 条
  • [21] Continuum and lattice Coulomb-gauge Hamiltonian
    Zwanziger, D
    CONFINEMENT, DUALITY, AND NONPERTURBATIVE ASPECTS OF QCD, 1998, 368 : 145 - 160
  • [22] Enhancing sensitivity in quantum metrology by Hamiltonian extensions
    Fraisse, Julien Mathieu Elias
    Braun, Daniel
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [23] Dissipative extensions and port -Hamiltonian operators on networks
    Waurick, Marcus
    Wegner, Sven-Ake
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (09) : 6830 - 6874
  • [24] Friedrichs extensions of a class of singular Hamiltonian systems
    Yang, Chen
    Sun, Huaqing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 293 : 359 - 391
  • [25] Extensions of Hamiltonian systems dependent on a rational parameter
    Chanu, Claudia Maria
    Degiovanni, Luca
    Rastelli, Giovanni
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (12)
  • [26] Warped product of Hamiltonians and extensions of Hamiltonian systems
    Chanu, Claudia Maria
    Degiovanni, Luca
    Rastelli, Giovanni
    XXXTH INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (ICGTMP) (GROUP30), 2015, 597
  • [27] Integrable extensions of two-center Coulomb systems
    Correa, Francisco
    Quintana, Octavio
    PHYSICAL REVIEW D, 2024, 109 (08)
  • [28] Hamiltonian and Super-Hamiltonian Extensions Related to Broer-Kaup-Kupershmidt System
    Yang, Hong-Xiang
    Sun, Ye-Peng
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (02) : 349 - 364
  • [29] Hamiltonian and Super-Hamiltonian Extensions Related to Broer-Kaup-Kupershmidt System
    Hong-Xiang Yang
    Ye-Peng Sun
    International Journal of Theoretical Physics, 2010, 49 : 349 - 364
  • [30] Cwikel-Lieb-Rozenblum inequalities for the Coulomb Hamiltonian
    Selvi, Andres Diaz
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (02)