Incompatible Coulomb hamiltonian extensions

被引:0
|
作者
G. Abramovici
机构
[1] Université Paris-Saclay,
[2] CNRS,undefined
[3] Laboratoire de Physique des Solides,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We revisit the resolution of the one-dimensional Schrödinger hamiltonian with a Coulomb λ/|x| potential. We examine among its self-adjoint extensions those which are compatible with physical conservation laws. In the one-dimensional semi-infinite case, we show that they are classified on a U(1) circle in the attractive case and on (R,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{(}}{\mathbb{R}},{\boldsymbol{+}}{\boldsymbol{\infty }}{\boldsymbol{)}}$$\end{document} in the repulsive one. In the one-dimensional infinite case, we find a specific and original classification by studying the continuity of eigenfunctions. In all cases, different extensions are incompatible one with the other. For an actual experiment with an attractive potential, the bound spectrum can be used to discriminate which extension is the correct one.
引用
收藏
相关论文
共 50 条
  • [1] Incompatible Coulomb hamiltonian extensions
    Abramovici, G.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [2] Author Correction: Incompatible Coulomb hamiltonian extensions
    G. Abramovici
    Scientific Reports, 10 (1)
  • [3] INCOMPATIBLE EXTENSIONS OF COMBINATORIAL FUNCTIONS
    ELLENTUCK, E
    JOURNAL OF SYMBOLIC LOGIC, 1983, 48 (03) : 752 - 755
  • [4] COLLISIONS FOR THE QUANTUM COULOMB HAMILTONIAN
    GERARD, C
    KNAUF, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 143 (01) : 17 - 26
  • [5] APPROXIMATE RELATIVISTIC COULOMB HAMILTONIAN
    SHETH, CV
    SWAMY, NVVJ
    PHYSICAL REVIEW D, 1972, 5 (10): : 2659 - &
  • [6] Coulomb confinement in the Hamiltonian limit
    Dawid, Sebastian M.
    Smith, Wyatt A.
    Rodas, Arkaitz
    Perry, Robert J.
    Fernandez-Ramirez, Cesar
    Swanson, Eric S.
    Szczepaniak, Adam P.
    PHYSICAL REVIEW D, 2024, 110 (09)
  • [7] Integrable extensions of Hubbard Hamiltonian
    Avakyan, A
    Hakobyan, T
    Sedrakyan, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (26-27): : 3207 - 3222
  • [8] Lattice Coulomb hamiltonian and static color-Coulomb field
    Zwanziger, D
    NUCLEAR PHYSICS B, 1997, 485 (1-2) : 185 - 240
  • [9] Lattice Coulomb hamiltonian and static color-Coulomb field
    Zwanziger, D.
    Nuclear Physics, Section B, 485 (1-2):
  • [10] ONE-DIMENSIONAL COULOMB HAMILTONIAN
    GESZTESY, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (03): : 867 - 875