Bounds on the density of states for Schrödinger operators

被引:0
|
作者
Jean Bourgain
Abel Klein
机构
[1] Institute for Advanced Study,Department of Mathematics
[2] University of California,undefined
[3] Irvine,undefined
来源
Inventiones mathematicae | 2013年 / 194卷
关键词
State Measure; Dirichlet Boundary Condition; Borel Subset; Anderson Model; Lower Order Term;
D O I
暂无
中图分类号
学科分类号
摘要
We establish bounds on the density of states measure for Schrödinger operators. These are deterministic results that do not require the existence of the density of states measure, or, equivalently, of the integrated density of states. The results are stated in terms of a “density of states outer-measure” that always exists, and provides an upper bound for the density of states measure when it exists. We prove log-Hölder continuity for this density of states outer-measure in one, two, and three dimensions for Schrödinger operators, and in any dimension for discrete Schrödinger operators.
引用
收藏
页码:41 / 72
页数:31
相关论文
共 50 条
  • [31] Schrödinger Operators and the Zeros of Their Eigenfunctions
    Sol Schwartzman
    [J]. Communications in Mathematical Physics, 2011, 306 : 187 - 191
  • [32] Schrödinger Operators on Zigzag Nanotubes
    Evgeny Korotyaev
    Igor Lobanov
    [J]. Annales Henri Poincaré, 2007, 8 : 1151 - 1176
  • [33] Exactly Solvable Schrödinger Operators
    Jan Dereziński
    Michał Wrochna
    [J]. Annales Henri Poincaré, 2011, 12 : 397 - 418
  • [34] Resonance Theory for Schrödinger Operators
    O. Costin
    A. Soffer
    [J]. Communications in Mathematical Physics, 2001, 224 : 133 - 152
  • [35] Correlation Inequalities for Schrödinger Operators
    Tadahiro Miyao
    [J]. Mathematical Physics, Analysis and Geometry, 2020, 23
  • [36] Schrödinger operators periodic in octants
    Evgeny Korotyaev
    Jacob Schach MØller
    [J]. Letters in Mathematical Physics, 2021, 111
  • [37] Kernel estimates for Schrödinger operators
    G. Metafune
    D. Pallara
    A. Rhandi
    [J]. Journal of Evolution Equations, 2006, 6 : 433 - 457
  • [38] A Liouville property for Schrödinger operators
    Alexander Grigor'yan
    Wolfhard Hansen
    [J]. Mathematische Annalen, 1998, 312 : 659 - 716
  • [39] Bilinear operators associated with generalized Schrödinger operators
    Nan Hu
    Yu Liu
    [J]. Journal of Pseudo-Differential Operators and Applications, 2019, 10 : 837 - 854
  • [40] Number of Bound States of Schrödinger Operators with Matrix-Valued Potentials
    Rupert L. Frank
    Elliott H. Lieb
    Robert Seiringer
    [J]. Letters in Mathematical Physics, 2007, 82 : 107 - 116