Quantum interference control of electrical currents in GaAs microstructures: physics and spectroscopic applications

被引:0
|
作者
E. Sternemann
T. Jostmeier
C. Ruppert
S. Thunich
H. T. Duc
R. Podzimski
T. Meier
M. Betz
机构
[1] TU Dortmund,Experimentelle Physik 2
[2] Universität Paderborn,Department of Physics and CeOPP
[3] Vietnam Academy of Science and Technology,Ho Chi Minh City Institute of Physics
来源
Applied Physics B | 2016年 / 122卷
关键词
GaAs; Second Harmonic Generation; Harmonic Generation; Current Injection; Group Velocity Dispersion;
D O I
暂无
中图分类号
学科分类号
摘要
We present a comprehensive study of coherently controlled charge currents in electrically contacted GaAs microdevices. Currents are generated all-optically by phase-related femtosecond ω/2ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega /2\omega$$\end{document} pulse pairs and are often linked to the third-order optical nonlinearity χ(3)(0;ω,ω,-2ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{(3)}(0;\omega ,\omega ,-2\omega )$$\end{document}. Here, we first focus on elevated irradiances where absorption saturation and ultimately the onset of Rabi oscillations contribute to the optical response. In particular, we identify clear departures of the injected current from the χ(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{(3)}$$\end{document}-expectation dJ/dt∝Eω2E2ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm {d}}J/{\mathrm {d}}t \propto E_\omega ^2 E_{2\omega }$$\end{document}. Theoretical simulations for the coherently controlled current based on the semiconductor Bloch equations agree well with the experimental trends. We then move on to investigate spectroscopic applications of the quantum interference control technique. In particular, we implement a versatile scheme to analyze the phase structure of femtosecond pulses. It relies on phase-sensitive χ(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{(3)}$$\end{document}-current injection driven by two time-delayed portions of the ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document}/2ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\omega$$\end{document} pulse pair. Most strikingly, the group velocity dispersions of both the ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document} and 2ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\omega$$\end{document} components can be unambiguously determined from a simple Fourier transform of the resulting current interferogram. Finally, we aim to use femtosecond ω/2ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega /2\omega$$\end{document} pulse pairs to demonstrate a theoretically proposed scheme for all-optical current detection in thin GaAs membranes. However, we find the signal to be superimposed by second harmonic generation related to the electric field inducing the current. As a result, the currents’ signature cannot be unambiguously identified.
引用
收藏
相关论文
共 50 条
  • [1] Quantum interference control of electrical currents in GaAs microstructures: physics and spectroscopic applications
    Sternemann, E.
    Jostmeier, T.
    Ruppert, C.
    Thunich, S.
    Duc, H. T.
    Podzimski, R.
    Meier, T.
    Betz, M.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2016, 122 (02):
  • [2] Quantum interference control of electrical currents in GaAs
    Hache, A
    Sipe, JE
    van Driel, HM
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1998, 34 (07) : 1144 - 1154
  • [3] Quantum Interference Control of Electrical Currents in Silicon
    Costa, L.
    Spasenovic, M.
    Betz, M.
    Bristow, A. D.
    van Driel, H. M.
    2007 CONFERENCE ON LASERS & ELECTRO-OPTICS/QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2007), VOLS 1-5, 2007, : 975 - +
  • [4] Femtosecond quantum interference control of electrical currents in GaAs: Signatures beyond the perturbative χ(3) limit
    Sternemann, E.
    Jostmeier, T.
    Ruppert, C.
    Duc, H. T.
    Meier, T.
    Betz, M.
    PHYSICAL REVIEW B, 2013, 88 (16):
  • [5] Dynamics of charge currents ballistically injected in GaAs by quantum interference
    Zhao, Hui
    Loren, Eric J.
    Smirl, Arthur L.
    Van Driel, H.M.
    Journal of Applied Physics, 2008, 103 (05):
  • [6] Dynamics of charge currents ballistically injected in GaAs by quantum interference
    Zhao, Hui
    Loren, Eric J.
    Smirl, Arthur L.
    van Driel, H. M.
    JOURNAL OF APPLIED PHYSICS, 2008, 103 (05)
  • [7] Quantum interference control of electrical currents and THz radiation in optically excited zinc-blende quantum wells
    Khurgin, JB
    PHYSICAL REVIEW B, 2006, 73 (03)
  • [8] Phase-retrieval of femtosecond pulses utilizing ω/2ω quantum interference control of electrical currents
    Sternemann, Elmar
    Betz, Markus
    Ruppert, Claudia
    OPTICS LETTERS, 2014, 39 (12) : 3654 - 3657
  • [9] Superfluid helium quantum interference devices: physics and applications
    Sato, Y.
    Packard, R. E.
    REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (01)
  • [10] Characterization of quantum interference control of injected currents in LT-GaAs for carrier-envelope phase measurements
    Roos, PA
    Quraishi, Q
    Cundiff, ST
    Bhat, RDR
    Sipe, JE
    OPTICS EXPRESS, 2003, 11 (17): : 2081 - 2090