Adversarial Manifold Estimation

被引:0
|
作者
Eddie Aamari
Alexander Knop
机构
[1] Sorbonne Université,LPSM, CNRS, Université Paris Cité
[2] University of California,Department of Mathematics
[3] San Diego,undefined
关键词
Manifold estimation; Statistical queries; Reach; Geometric inference; 62G05; 62G35; 68Q32;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the statistical query (SQ) complexity of estimating d-dimensional submanifolds in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}. We propose a purely geometric algorithm called manifold propagation, that reduces the problem to three natural geometric routines: projection, tangent space estimation, and point detection. We then provide constructions of these geometric routines in the SQ framework. Given an adversarial STAT(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {STAT}(\tau )$$\end{document} oracle and a target Hausdorff distance precision ε=Ω(τ2/(d+1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon = \Omega (\tau ^{2 / (d + 1)})$$\end{document}, the resulting SQ manifold reconstruction algorithm has query complexity O~(nε-d/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{O}}(n \varepsilon ^{-d / 2})$$\end{document}, which is proved to be nearly optimal. In the process, we establish low-rank matrix completion results for SQ’s and lower bounds for randomized SQ estimators in general metric spaces.
引用
收藏
页码:1 / 97
页数:96
相关论文
共 50 条
  • [41] On Nonlinear State Estimation in a Riemannian Manifold
    Solo, Victor
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 8500 - 8505
  • [42] Discriminative Manifold Learning Network using Adversarial Examples for Image Classification
    Zhang, Yuan
    Shi, Biming
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2018, 13 (05) : 2099 - 2106
  • [43] Manifold-Valued Image Generation withWasserstein Generative Adversarial Nets
    Huang, Zhiwu
    Wu, Jiqing
    Van Gool, Luc
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 3886 - 3893
  • [44] Improving model generalization by on-manifold adversarial augmentation in the frequency domain☆
    Liu, Chang
    Xiang, Wenzhao
    He, Yuan
    Xue, Hui
    Zheng, Shibao
    Su, Hang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2025, 109
  • [45] MR-GAN: Manifold Regularized Generative Adversarial Networks for Scientific
    Li, Qunwei
    Kailkhura, Bhavya
    Anirudh, Rushil
    Zhang, Jize
    Zhou, Yi
    Liang, Yingbin
    Han, T. Yong-Jin
    Varshney, Pramod K.
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2021, 3 (04): : 1197 - 1222
  • [46] ManiGen: A Manifold Aided Black-Box Generator of Adversarial Examples
    Liu, Guanxiong
    Khalil, Issa
    Khreishah, Abdallah
    Algosaibi, Abdulelah
    Aldalbahi, Adel
    Alnaeem, Mohammed
    Alhumam, Abdulaziz
    Anan, Muhammad
    IEEE ACCESS, 2020, 8 : 197086 - 197096
  • [47] On-manifold adversarial attack based on latent space substitute model
    Zhang, Chunkai
    Luo, Xiaofeng
    Han, Peiyi
    Computers and Security, 2022, 120
  • [48] On-manifold adversarial attack based on latent space substitute model
    Zhang, Chunkai
    Luo, Xiaofeng
    Han, Peiyi
    COMPUTERS & SECURITY, 2022, 120
  • [49] Adversarial Attacks on Monocular Pose Estimation
    Chawla, Hemang
    Varma, Arnav
    Arani, Elahe
    Zonooz, Bahram
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 12500 - 12505
  • [50] Adversarial versus cooperative quantum estimation
    Milajiguli Rexiti
    Stefano Mancini
    Quantum Information Processing, 2019, 18