Adversarial Manifold Estimation

被引:0
|
作者
Eddie Aamari
Alexander Knop
机构
[1] Sorbonne Université,LPSM, CNRS, Université Paris Cité
[2] University of California,Department of Mathematics
[3] San Diego,undefined
关键词
Manifold estimation; Statistical queries; Reach; Geometric inference; 62G05; 62G35; 68Q32;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the statistical query (SQ) complexity of estimating d-dimensional submanifolds in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}. We propose a purely geometric algorithm called manifold propagation, that reduces the problem to three natural geometric routines: projection, tangent space estimation, and point detection. We then provide constructions of these geometric routines in the SQ framework. Given an adversarial STAT(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {STAT}(\tau )$$\end{document} oracle and a target Hausdorff distance precision ε=Ω(τ2/(d+1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon = \Omega (\tau ^{2 / (d + 1)})$$\end{document}, the resulting SQ manifold reconstruction algorithm has query complexity O~(nε-d/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{O}}(n \varepsilon ^{-d / 2})$$\end{document}, which is proved to be nearly optimal. In the process, we establish low-rank matrix completion results for SQ’s and lower bounds for randomized SQ estimators in general metric spaces.
引用
收藏
页码:1 / 97
页数:96
相关论文
共 50 条
  • [21] Manifold Next Event Estimation
    Hanika, Johannes
    Droske, Marc
    Fascione, Luca
    COMPUTER GRAPHICS FORUM, 2015, 34 (04) : 87 - 97
  • [22] Nonlocal estimation of manifold structure
    Bengio, Yoshua
    Monperrus, Martin
    Larochelle, Hugo
    NEURAL COMPUTATION, 2006, 18 (10) : 2509 - 2528
  • [23] Density estimation on the Stiefel manifold
    Chikuse, Y
    JOURNAL OF MULTIVARIATE ANALYSIS, 1998, 66 (02) : 188 - 206
  • [24] Manifold-based synthetic oversampling with manifold conformance estimation
    Colin Bellinger
    Christopher Drummond
    Nathalie Japkowicz
    Machine Learning, 2018, 107 : 605 - 637
  • [25] Manifold-based synthetic oversampling with manifold conformance estimation
    Bellinger, Colin
    Drummond, Christopher
    Japkowicz, Nathalie
    MACHINE LEARNING, 2018, 107 (03) : 605 - 637
  • [26] Generalized Loss-Sensitive Adversarial Learning with Manifold Margins
    Edraki, Marzieh
    Qi, Guo-Jun
    COMPUTER VISION - ECCV 2018, PT V, 2018, 11209 : 90 - 104
  • [27] Manifold adversarial training for supervised and semi-supervised learning
    Zhang, Shufei
    Huang, Kaizhu
    Zhu, Jianke
    Liu, Yang
    NEURAL NETWORKS, 2021, 140 : 282 - 293
  • [28] Improving the Robustness of Model Compression by On-Manifold Adversarial Training
    Kwon, Junhyung
    Lee, Sangkyun
    FUTURE INTERNET, 2021, 13 (12)
  • [29] On-manifold Adversarial Data Augmentation Improves Uncertainty Calibration
    Patel, Kanil
    Beluch, William
    Zhang, Dan
    Pfeiffer, Michael
    Yang, Bin
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 8029 - 8036
  • [30] On and off the manifold: Generation and Detection of adversarial attacks in IIoT networks
    Al-Fawa'reh, Mohammad
    Abu-khalaf, Jumana
    Janjua, Naeem
    Szewczyk, Patryk
    Journal of Network and Computer Applications, 2025, 235