Adversarial Manifold Estimation

被引:0
|
作者
Eddie Aamari
Alexander Knop
机构
[1] Sorbonne Université,LPSM, CNRS, Université Paris Cité
[2] University of California,Department of Mathematics
[3] San Diego,undefined
关键词
Manifold estimation; Statistical queries; Reach; Geometric inference; 62G05; 62G35; 68Q32;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the statistical query (SQ) complexity of estimating d-dimensional submanifolds in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}. We propose a purely geometric algorithm called manifold propagation, that reduces the problem to three natural geometric routines: projection, tangent space estimation, and point detection. We then provide constructions of these geometric routines in the SQ framework. Given an adversarial STAT(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {STAT}(\tau )$$\end{document} oracle and a target Hausdorff distance precision ε=Ω(τ2/(d+1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon = \Omega (\tau ^{2 / (d + 1)})$$\end{document}, the resulting SQ manifold reconstruction algorithm has query complexity O~(nε-d/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{O}}(n \varepsilon ^{-d / 2})$$\end{document}, which is proved to be nearly optimal. In the process, we establish low-rank matrix completion results for SQ’s and lower bounds for randomized SQ estimators in general metric spaces.
引用
收藏
页码:1 / 97
页数:96
相关论文
共 50 条
  • [1] Adversarial Manifold Estimation
    Aamari, Eddie
    Knop, Alexander
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024, 24 (01) : 1 - 97
  • [2] A Manifold View of Adversarial Risk
    Zhang, Wenjia
    Zhang, Yikai
    Hu, Xiaolin
    Goswami, Mayank
    Chen, Chao
    Metaxas, Dimitris
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [3] Adversarial Purification with the Manifold Hypothesis
    Yang, Zhaoyuan
    Xu, Zhiwei
    Zhang, Jing
    Hartley, Richard
    Tu, Peter
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 16379 - 16387
  • [4] Understanding adversarial robustness against on-manifold adversarial examples
    Xiao, Jiancong
    Yang, Liusha
    Fan, Yanbo
    Wang, Jue
    Luo, Zhi-Quan
    PATTERN RECOGNITION, 2025, 159
  • [5] ADVERSARIAL MANIFOLD LEARNING FOR SPEAKER RECOGNITION
    Chien, Jen-Tzung
    Peng, Kang-Ting
    2017 IEEE AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING WORKSHOP (ASRU), 2017, : 599 - 605
  • [6] Manifold Adversarial Augmentation for Neural Machine Translation
    Chen, Guandan
    Fan, Kai
    Zhang, Kaibo
    Chen, Boxing
    Huang, Zhongqiang
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 3184 - 3189
  • [7] Exploring Adversarial Fake Images on Face Manifold
    Li, Dongze
    Wang, Wei
    Fan, Hongxing
    Dong, Jing
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5785 - 5794
  • [8] Manifold-driven decomposition for adversarial robustness
    Zhang, Wenjia
    Zhang, Yikai
    Hu, Xiaoling
    Yao, Yi
    Goswami, Mayank
    Chen, Chao
    Metaxas, Dimitris
    FRONTIERS IN COMPUTER SCIENCE, 2024, 5
  • [9] Disconnected Manifold Learning for Generative Adversarial Networks
    Khayatkhoei, Mahyar
    Elgammal, Ahmed
    Singh, Maneesh
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [10] Manifold discrimination partial adversarial domain adaptation
    He, Chunmei
    Zheng, Lanqing
    Tan, Taifeng
    Fan, Xianjun
    Ye, Zhengchun
    KNOWLEDGE-BASED SYSTEMS, 2022, 252