Linear Complexity Solution of Parabolic Integro-differential Equations

被引:0
|
作者
A. -M. Matache
C. Schwab
T. P. Wihler
机构
[1] Bank Julius Baer & Co. Ltd. Private Banking,Seminar for Applied Mathematics
[2] ETH Zürich,Department of Mathematics and Statistics
[3] McGill University,undefined
来源
Numerische Mathematik | 2006年 / 104卷
关键词
Parabolic equations; Integro-differential operators; Discontinuous Galerkin methods; Wavelets; Matrix compression; GMRES; Computational finance; Option pricing;
D O I
暂无
中图分类号
学科分类号
摘要
The numerical solution of parabolic problems \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_t + \mathcal{A} u = 0$$\end{document} with a pseudo-differential operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{A}$$\end{document} by wavelet discretization in space and hp discontinuous Galerkin time stepping is analyzed. It is proved that an approximation for u(T) can be obtained in N points with accuracy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{O}(N^{-p-1})$$\end{document} for any integer p ≥ 1 in work and memory which grows logarithmically-linear in N.
引用
收藏
页码:69 / 102
页数:33
相关论文
共 50 条