Analyticity for solution of fractional integro-differential equations

被引:0
|
作者
Blatt, Simon [1 ]
机构
[1] Paris Lodron Univ Salzburg, Dept Math, Hellbrunner Str 34, A-5020 Salzburg, Austria
基金
奥地利科学基金会;
关键词
Integro-differential equations; Fractional Laplacian; Non-linear elliptic equation; Real analytic solutions; Faa di Bruno's formula; Method of majorants; LINEAR ELLIPTIC SYSTEMS; REGULARITY;
D O I
10.1016/j.na.2022.113071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for a certain class of kernels K(y) viscosity solutions of the integro-differential equation. integral(n)(R) (u(x + y) - 2u(x) + u(x - y))K(y) dy = f(x, u(x)) are locally analytic if f is an analytic function. This extends results in Albanese et al. (2015) in which it was shown that such solutions belong to certain Gevrey classes. (c) 2022 TheAuthor(s). Published by Elsevier Ltd. This is an open access article under theCCBYlicense (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Analytic solution of fractional integro-differential equations
    Awawdeh, Fadi
    Rawashdeh, E. A.
    Jaradat, H. M.
    [J]. ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2011, 38 (01): : 1 - 10
  • [2] Some Solution of the Fractional Iterative Integro-Differential Equations
    Kilicman, Adem
    Damag, F. H. M.
    [J]. MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2018, 12 (01): : 121 - 141
  • [3] Solution of fractional integro-differential equations by using fractional differential transform method
    Arikoglu, Aytac
    Ozkol, Ibrahim
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 40 (02) : 521 - 529
  • [4] A SOLUTION METHOD FOR INTEGRO-DIFFERENTIAL EQUATIONS OF CONFORMABLE FRACTIONAL DERIVATIVE
    Bayram, Mustafa
    Hatipoglu, Veysel Fuat
    Alkan, Sertan
    Das, Sebahat Ebru
    [J]. THERMAL SCIENCE, 2018, 22 : S7 - S14
  • [5] On a method for constructing a solution of integro-differential equations of fractional order
    Turmetov, Batirkhan Kh
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2018, (25) : 1 - 14
  • [6] A NEW APPROACH FOR THE APPROXIMATE SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
    Bayrak, Mine aylin
    Demir, A. L., I
    [J]. BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2021, 16 (03): : 193 - 215
  • [7] A unique weak solution for the fractional integro-differential schrodinger equations
    Shivanian, Elyas
    Ghoncheh, Seyed Jalal Hosseini
    Goudarzi, Hojjatollah
    [J]. MATHEMATICAL SCIENCES, 2023, 17 (01) : 15 - 19
  • [8] A NEW SOLUTION METHOD FOR NONLINEAR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
    Alkan, Sertan
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2015, 8 (06): : 1065 - 1077
  • [9] Numerical solution of fractional integro-differential equations by collocation method
    Rawashdeh, E. A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 176 (01) : 1 - 6
  • [10] Integro-Differential Equations of Fractional Order
    Saïd Abbas
    Mouffak Benchohra
    John R. Graef
    [J]. Differential Equations and Dynamical Systems, 2012, 20 (2) : 139 - 148