Local Neighbor-Distinguishing Index of Graphs

被引:0
|
作者
Weifan Wang
Puning Jing
Jing Gu
Yiqiao Wang
机构
[1] Shandong University of Technology,School of Mathematics and Statistics
[2] Zhejiang Normal University,Department of Mathematics
[3] Changzhou University,Department of Mathematics
[4] Beijing University of Chinese Medicine,School of Management
关键词
Local neighbor-distinguishing index; Strict neighbor-distinguishing index; Edge-coloring; Planar graph; Factor; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that G is a graph and ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is a proper edge-coloring of G. For a vertex v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(G)$$\end{document}, let Cϕ(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }(v)$$\end{document} denote the set of colors assigned to the edges incident with v. The graph G is local neighbor-distinguishing with respect to the coloring ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} if for any two adjacent vertices x and y of degree at least two, it holds that Cϕ(x)⊈Cϕ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }(x)\not \subseteq C_{\phi }(y)$$\end{document} and Cϕ(y)⊈Cϕ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }(y)\not \subseteq C_{\phi }(x)$$\end{document}. The local neighbor-distinguishing index, denoted χlnd′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)$$\end{document}, of G is defined as the minimum number of colors in a local neighbor-distinguishing edge-coloring of G. For n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, let Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_n$$\end{document} denote the graph obtained from the bipartite graph K2,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{2,n}$$\end{document} by inserting a 2-vertex into one edge. In this paper, we show the following results: (1) For any graph G, χlnd′(G)≤3Δ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le 3\Delta -1$$\end{document}; (2) suppose that G is a planar graph. Then χlnd′(G)≤⌈2.8Δ⌉+4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le \lceil 2.8\Delta \rceil +4$$\end{document}; and moreover χlnd′(G)≤2Δ+10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le 2\Delta +10$$\end{document} if G contains no 4-cycles; χlnd′(G)≤Δ+23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le \Delta +23$$\end{document} if G is 3-connected; and χlnd′(G)≤Δ+6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le \Delta +6$$\end{document} if G is Hamiltonian.
引用
收藏
相关论文
共 50 条
  • [41] Neighbor Sum Distinguishing Index
    Flandrin, Evelyne
    Marczyk, Antoni
    Przybylo, Jakub
    Sacle, Jean-Francois
    Wozniak, Mariusz
    GRAPHS AND COMBINATORICS, 2013, 29 (05) : 1329 - 1336
  • [42] Neighbor sum distinguishing chromatic index of sparse graphs via the combinatorial Nullstellensatz
    Xiao-wei Yu
    Yu-ping Gao
    Lai-hao Ding
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 135 - 144
  • [43] Neighbor sum distinguishing chromatic index of sparse graphs via the combinatorial Nullstellensatz
    Yu, Xiao-wei
    Gao, Yu-ping
    Ding, Lai-hao
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (01): : 135 - 144
  • [44] Neighbor Sum Distinguishing Index
    Evelyne Flandrin
    Antoni Marczyk
    Jakub Przybyło
    Jean-François Saclé
    Mariusz Woźniak
    Graphs and Combinatorics, 2013, 29 : 1329 - 1336
  • [45] Neighbor Sum Distinguishing Chromatic Index of Sparse Graphs via the Combinatorial Nullstellensatz
    Xiao-wei YU
    Yu-ping GAO
    Lai-hao DING
    Acta Mathematicae Applicatae Sinica, 2018, 34 (01) : 135 - 144
  • [46] NEIGHBOR SUM DISTINGUISHING COLORING OF SOME GRAPHS
    Dong, Aijun
    Wang, Guanghui
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2012, 4 (04)
  • [47] Distinguishing Number and Distinguishing Index of Certain Graphs
    Alikhani, Saeid
    Soltani, Samaneh
    FILOMAT, 2017, 31 (14) : 4393 - 4404
  • [48] The Distinguishing Index of Infinite Graphs
    Broere, Izak
    Pilsniak, Monika
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (01):
  • [49] Extremal graphs for the distinguishing index
    Kalinowski, Rafal
    Pilsniak, Monika
    DISCRETE MATHEMATICS, 2022, 345 (08)
  • [50] Distance labelings and (total-)neighbor-distinguishing colorings of the edge-multiplicity-paths-replacements
    Lu Damei
    ARS COMBINATORIA, 2017, 131 : 143 - 159