Local Neighbor-Distinguishing Index of Graphs

被引:0
|
作者
Weifan Wang
Puning Jing
Jing Gu
Yiqiao Wang
机构
[1] Shandong University of Technology,School of Mathematics and Statistics
[2] Zhejiang Normal University,Department of Mathematics
[3] Changzhou University,Department of Mathematics
[4] Beijing University of Chinese Medicine,School of Management
关键词
Local neighbor-distinguishing index; Strict neighbor-distinguishing index; Edge-coloring; Planar graph; Factor; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that G is a graph and ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is a proper edge-coloring of G. For a vertex v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(G)$$\end{document}, let Cϕ(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }(v)$$\end{document} denote the set of colors assigned to the edges incident with v. The graph G is local neighbor-distinguishing with respect to the coloring ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} if for any two adjacent vertices x and y of degree at least two, it holds that Cϕ(x)⊈Cϕ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }(x)\not \subseteq C_{\phi }(y)$$\end{document} and Cϕ(y)⊈Cϕ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }(y)\not \subseteq C_{\phi }(x)$$\end{document}. The local neighbor-distinguishing index, denoted χlnd′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)$$\end{document}, of G is defined as the minimum number of colors in a local neighbor-distinguishing edge-coloring of G. For n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, let Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_n$$\end{document} denote the graph obtained from the bipartite graph K2,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{2,n}$$\end{document} by inserting a 2-vertex into one edge. In this paper, we show the following results: (1) For any graph G, χlnd′(G)≤3Δ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le 3\Delta -1$$\end{document}; (2) suppose that G is a planar graph. Then χlnd′(G)≤⌈2.8Δ⌉+4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le \lceil 2.8\Delta \rceil +4$$\end{document}; and moreover χlnd′(G)≤2Δ+10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le 2\Delta +10$$\end{document} if G contains no 4-cycles; χlnd′(G)≤Δ+23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le \Delta +23$$\end{document} if G is 3-connected; and χlnd′(G)≤Δ+6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le \Delta +6$$\end{document} if G is Hamiltonian.
引用
收藏
相关论文
共 50 条
  • [31] Neighbor sum distinguishing index of planar graphs
    Wang, Guanghui
    Chen, Zhumin
    Wang, Jihui
    DISCRETE MATHEMATICS, 2014, 334 : 70 - 73
  • [32] On the Neighbor Sum Distinguishing Index of Planar Graphs
    Bonamy, M.
    Przybylo, J.
    JOURNAL OF GRAPH THEORY, 2017, 85 (03) : 669 - 690
  • [33] Neighbor Sum Distinguishing Index of -Minor Free Graphs
    Zhang, Jianghua
    Ding, Laihao
    Wang, Guanghui
    Yan, Guiying
    Zhou, Shan
    GRAPHS AND COMBINATORICS, 2016, 32 (04) : 1621 - 1633
  • [34] The neighbor expanded sum distinguishing index of Halin graphs
    Huo, Jingjing
    Shiu, Wai Chee
    Wang, Weifan
    ARS COMBINATORIA, 2018, 141 : 63 - 73
  • [35] On generalized neighbor sum distinguishing index of planar graphs
    Feng, Jieru
    Wang, Yue
    Wu, Jianliang
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (04)
  • [36] Neighbor Sum Distinguishing Index of Some Double Graphs
    Han, Xue
    Ma, Jin-zhu
    2016 2ND INTERNATIONAL CONFERENCE ON EDUCATION AND MANAGEMENT SCIENCE (ICEMS 2016), 2016, : 103 - 106
  • [37] Neighbor sum distinguishing index of 2-degenerate graphs
    Hu, Xiaolan
    Chen, Yaojun
    Luo, Rong
    Miao, Zhengke
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (03) : 798 - 809
  • [38] Neighbor sum distinguishing index of 2-degenerate graphs
    Xiaolan Hu
    Yaojun Chen
    Rong Luo
    Zhengke Miao
    Journal of Combinatorial Optimization, 2017, 34 : 798 - 809
  • [39] An improved upper bound for the neighbor sum distinguishing index of graphs
    Wang, Guanghui
    Yan, Guiying
    DISCRETE APPLIED MATHEMATICS, 2014, 175 : 126 - 128
  • [40] On the Total Neighbor Sum Distinguishing Index of IC-Planar Graphs
    Zhang, Donghan
    Li, Chao
    Chao, Fugang
    SYMMETRY-BASEL, 2021, 13 (10):