We study the Clifford index c of a smooth irreducible curve X in the linear series |2H| on a special K3 surface S of degree 2n in Pn+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb P}}^{n+1}$$\end{document}, with hyperplane section H, and we look for the complete and base point free linear series of S whose restrictions to X compute c. In a more general context, we discuss the features of such series, for an assigned curve on a K3 surface; this discussion is of some independent interest.
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy