Siamese refine polar mask prediction network for visual tracking

被引:0
|
作者
Bin Pu
Ke Xiang
Ze’an Liu
Xuanyin Wang
机构
[1] Zhejiang University,State Key Laboratory of Fluid Power and Mechatronic Systems
[2] Zhejiang Sunny Optical Intelligence Technology CO.,undefined
[3] LTD.,undefined
来源
Signal, Image and Video Processing | 2024年 / 18卷
关键词
Visual tracking; Siamese network; Polar mask; Object segmentation;
D O I
暂无
中图分类号
学科分类号
摘要
Visual tracking is a classical research problem and recently tracking with mask prediction has been a popular task in tracking research. Many trackers add a pixel-wise segmentation subnetwork behind the original bounding box tracker to get the target’s mask. These two-stage methods need to crop the target region after finding its location and extract deep features for segmentation redundantly. This paper proposes an anchor-free Siamese Refine Polar Mask (SiamRPM) prediction network for visual tracking, which can obtain the target’s mask directly. Similar to bounding box regression, we use polar mask regression to get the target’s convex hull mask. To further adjust the contour points, we propose to employ a cascaded refinement module. The mask contours are iteratively shifted using the offset outputs of the refinement module. Comprehensive experiments on visual tracking benchmark datasets illustrate that our SiamRPM can achieve competitive results with a real-time running speed. Our method provides an effective contour-based pipeline for the tracking and segmentation task.
引用
收藏
页码:923 / 933
页数:10
相关论文
共 50 条
  • [1] Siamese refine polar mask prediction network for visual tracking
    Pu, Bin
    Xiang, Ke
    Liu, Ze'an
    Wang, Xuanyin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (01) : 923 - 933
  • [2] Siamese High-Level Feature Refine Network for Visual Object Tracking
    Rahman, Md. Maklachur
    Ahmed, Md Rishad
    Laishram, Lamyanba
    Kim, Seock Ho
    Jung, Soon Ki
    ELECTRONICS, 2020, 9 (11) : 1 - 21
  • [3] SiamDMU: Siamese Dual Mask Update Network for Visual Object Tracking
    Liu, Jing
    Wang, Han
    Ma, Chao
    Su, Yuting
    Yang, Xiaokang
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (02): : 1656 - 1669
  • [4] Template-Refine Network for Siamese Object Tracking
    Lu, Xiaofeng
    Li, Gaoxiang
    Yan, Zhaoyu
    Teng, Lin
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2024, 19 (10) : 1652 - 1660
  • [5] SiamCPN: Visual tracking with the Siamese center-prediction network
    Dong Chen
    Fan Tang
    Weiming Dong
    Hanxing Yao
    Changsheng Xu
    Computational Visual Media, 2021, 7 (02) : 253 - 265
  • [6] SiamCPN: Visual tracking with the Siamese center-prediction network
    Chen, Dong
    Tang, Fan
    Dong, Weiming
    Yao, Hanxing
    Xu, Changsheng
    COMPUTATIONAL VISUAL MEDIA, 2021, 7 (02) : 253 - 265
  • [7] SiamCPN: Visual tracking with the Siamese center-prediction network
    Dong Chen
    Fan Tang
    Weiming Dong
    Hanxing Yao
    Changsheng Xu
    Computational Visual Media, 2021, 7 : 253 - 265
  • [8] Siamese network ensemble for visual tracking
    Jiang, Chenru
    Xiao, Jimin
    Xie, Yanchun
    Tillo, Tammam
    Huang, Kaizhu
    NEUROCOMPUTING, 2018, 275 : 2892 - 2903
  • [9] Siamese Centerness Prediction Network for Real-Time Visual Object Tracking
    Wu, Yue
    Cai, Chengtao
    Yeo, Chai Kiat
    NEURAL PROCESSING LETTERS, 2023, 55 (02) : 1029 - 1044
  • [10] Siamese Centerness Prediction Network for Real-Time Visual Object Tracking
    Yue Wu
    Chengtao Cai
    Chai Kiat Yeo
    Neural Processing Letters, 2023, 55 : 1029 - 1044