Siamese High-Level Feature Refine Network for Visual Object Tracking

被引:4
|
作者
Rahman, Md. Maklachur [1 ]
Ahmed, Md Rishad [2 ,3 ,4 ]
Laishram, Lamyanba [1 ]
Kim, Seock Ho [1 ]
Jung, Soon Ki [1 ]
机构
[1] Kyungpook Natl Univ, Sch Comp Sci & Engn, Daegu 41566, South Korea
[2] Chinese Acad Sci, Inst Automat, Brainnetome Ctr, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
基金
新加坡国家研究基金会;
关键词
siamese network; visual object tracking; feature refine network; attention mechanism;
D O I
10.3390/electronics9111918
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Siamese network-based trackers are broadly applied to solve visual tracking problems due to its balanced performance in terms of speed and accuracy. Tracking desired objects in challenging scenarios is still one of the fundamental concerns during visual tracking. This research paper proposes a feature refined end-to-end tracking framework with real-time tracking speed and considerable performance. The feature refine network has been incorporated to enhance the target feature representation power, utilizing high-level semantic information. Besides, it allows the network to capture the salient information to locate the target and learns to represent the target feature in a more generalized way advancing the overall tracking performance, particularly in the challenging sequences. But, only the feature refine module is unable to handle such challenges because of its less discriminative ability. To overcome this difficulty, we employ an attention module inside the feature refine network that strengths the tracker discrimination ability between the target and background. Furthermore, we conduct extensive experiments to ensure the proposed tracker's effectiveness using several popular tracking benchmarks, demonstrating that our proposed model achieves state-of-the-art performance over other trackers.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [1] Deep Feature Based Siamese Network for Visual Object Tracking
    Lim, Su-Chang
    Huh, Jun-Ho
    Kim, Jong-Chan
    ENERGIES, 2022, 15 (17)
  • [2] Template-Refine Network for Siamese Object Tracking
    Lu, Xiaofeng
    Li, Gaoxiang
    Yan, Zhaoyu
    Teng, Lin
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2024, 19 (10) : 1652 - 1660
  • [3] Siamese refine polar mask prediction network for visual tracking
    Pu, Bin
    Xiang, Ke
    Liu, Ze'an
    Wang, Xuanyin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (01) : 923 - 933
  • [4] Siamese refine polar mask prediction network for visual tracking
    Bin Pu
    Ke Xiang
    Ze’an Liu
    Xuanyin Wang
    Signal, Image and Video Processing, 2024, 18 : 923 - 933
  • [5] Siamese Feedback Network for Visual Object Tracking
    Gwon M.-G.
    Kim J.
    Um G.-M.
    Lee H.
    Seo J.
    Lim S.Y.
    Yang S.-J.
    Kim W.
    IEIE Transactions on Smart Processing and Computing, 2022, 11 (01): : 24 - 33
  • [6] Online Siamese Network for Visual Object Tracking
    Chang, Shuo
    Li, Wei
    Zhang, Yifan
    Feng, Zhiyong
    SENSORS, 2019, 19 (08)
  • [7] SIAMESE FEATURE PYRAMID NETWORK FOR VISUAL TRACKING
    Chang, Shuo
    Zhang, Fan
    Huang, Sai
    Yao, Yuanyuan
    Zhao, Xiaotong
    Feng, Zhiyong
    2019 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS IN CHINA (ICCC WORKSHOPS), 2019, : 164 - 168
  • [8] Learning Dynamic Siamese Network for Visual Object Tracking
    Guo, Qing
    Feng, Wei
    Zhou, Ce
    Huang, Rui
    Wan, Liang
    Wang, Song
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 1781 - 1789
  • [9] SiamMN: Siamese modulation network for visual object tracking
    Fu, Li-hua
    Ding, Yu
    Du, Yu-bin
    Zhang, Bo
    Wang, Lu-yuan
    Wang, Dan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (43-44) : 32623 - 32641
  • [10] Visual Object Tracking by Hierarchical Attention Siamese Network
    Shen, Jianbing
    Tang, Xin
    Dong, Xingping
    Shao, Ling
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3068 - 3080