Online Siamese Network for Visual Object Tracking

被引:10
|
作者
Chang, Shuo [1 ]
Li, Wei [2 ]
Zhang, Yifan [1 ]
Feng, Zhiyong [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[2] Northern Illinois Univ, Dept Elect Engn, De Kalb, IL 60115 USA
关键词
visual object tracking; Siamese network; improved contrastive loss; Bayesian verification;
D O I
10.3390/s19081858
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Offline-trained Siamese networks are not robust to the environmental complication in visual object tracking. Without online learning, the Siamese network cannot learn from instance domain knowledge and adapt to appearance changes of targets. In this paper, a new lightweight Siamese network is proposed for feature extraction. To cope with the dynamics of targets and backgrounds, the weight in the proposed Siamese network is updated in an online manner during the tracking process. In order to enhance the discrimination capability, the cross-entropy loss is integrated into the contrastive loss. Inspired by the face verification algorithm DeepID2, the Bayesian verification model is applied for candidate selection. In general, visual object tracking can benefit from face verification algorithms. Numerical results suggest that the newly developed algorithm achieves comparable performance in public benchmarks.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Visual object tracking based on siamese network and online patch filters
    Xiong, Jiangfeng
    Xing, Xiaofen
    Chen, Hanzao
    [J]. TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [2] Siamese Feedback Network for Visual Object Tracking
    Gwon, Mi-Gyeong
    Kim, Jinhee
    Um, Gi-Mun
    Lee, HeeKyung
    Seo, Jeongil
    Lim, Seong Yong
    Yang, Seung-Jun
    Kim, Wonjun
    [J]. IEIE Transactions on Smart Processing and Computing, 2022, 11 (01): : 24 - 33
  • [3] Learning Dynamic Siamese Network for Visual Object Tracking
    Guo, Qing
    Feng, Wei
    Zhou, Ce
    Huang, Rui
    Wan, Liang
    Wang, Song
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 1781 - 1789
  • [4] Visual Object Tracking by Hierarchical Attention Siamese Network
    Shen, Jianbing
    Tang, Xin
    Dong, Xingping
    Shao, Ling
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3068 - 3080
  • [5] SiamMN: Siamese modulation network for visual object tracking
    Fu, Li-hua
    Ding, Yu
    Du, Yu-bin
    Zhang, Bo
    Wang, Lu-yuan
    Wang, Dan
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (43-44) : 32623 - 32641
  • [6] SiamMN: Siamese modulation network for visual object tracking
    Li-hua Fu
    Yu Ding
    Yu-bin Du
    Bo Zhang
    Lu-yuan Wang
    Dan Wang
    [J]. Multimedia Tools and Applications, 2020, 79 : 32623 - 32641
  • [7] Siamese block attention network for online update object tracking
    Dingkun Xiao
    Ke Tan
    Zhenzhong Wei
    Guangjun Zhang
    [J]. Applied Intelligence, 2023, 53 : 3459 - 3471
  • [8] Siamese block attention network for online update object tracking
    Xiao, Dingkun
    Tan, Ke
    Wei, Zhenzhong
    Zhang, Guangjun
    [J]. APPLIED INTELLIGENCE, 2023, 53 (03) : 3459 - 3471
  • [9] Siamese Attentional Cascade Keypoints Network for Visual Object Tracking
    Wang, Ershen
    Wang, Donglei
    Huang, Yufeng
    Tong, Gang
    Xu, Song
    Pang, Tao
    [J]. IEEE ACCESS, 2021, 9 : 7243 - 7254
  • [10] MASNet: mixed attention Siamese network for visual object tracking
    Zhang, Jianwei
    Zhang, Zhichen
    Zhang, Huanlong
    Wang, Jingchao
    Wang, He
    Zheng, Menya
    [J]. SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)