Online Siamese Network for Visual Object Tracking

被引:10
|
作者
Chang, Shuo [1 ]
Li, Wei [2 ]
Zhang, Yifan [1 ]
Feng, Zhiyong [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[2] Northern Illinois Univ, Dept Elect Engn, De Kalb, IL 60115 USA
关键词
visual object tracking; Siamese network; improved contrastive loss; Bayesian verification;
D O I
10.3390/s19081858
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Offline-trained Siamese networks are not robust to the environmental complication in visual object tracking. Without online learning, the Siamese network cannot learn from instance domain knowledge and adapt to appearance changes of targets. In this paper, a new lightweight Siamese network is proposed for feature extraction. To cope with the dynamics of targets and backgrounds, the weight in the proposed Siamese network is updated in an online manner during the tracking process. In order to enhance the discrimination capability, the cross-entropy loss is integrated into the contrastive loss. Inspired by the face verification algorithm DeepID2, the Bayesian verification model is applied for candidate selection. In general, visual object tracking can benefit from face verification algorithms. Numerical results suggest that the newly developed algorithm achieves comparable performance in public benchmarks.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Relation-aware Siamese region proposal network for visual object tracking
    Zhu, Jiaming
    Zhang, Guopeng
    Zhou, Shibin
    Li, Kun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (10) : 15469 - 15485
  • [42] SiamGauss: Siamese region proposal network with Gaussian head for visual object tracking
    Taufique, Abu Md Niamul
    Minnehan, Breton
    Savakis, Andreas
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (03)
  • [43] Siamese network ensemble for visual tracking
    Jiang, Chenru
    Xiao, Jimin
    Xie, Yanchun
    Tillo, Tammam
    Huang, Kaizhu
    NEUROCOMPUTING, 2018, 275 : 2892 - 2903
  • [44] Online visual tracking via cross-similarity-based siamese network
    Wang, Luyao
    Lu, Huchuan
    Zhang, Pingping
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (15):
  • [45] Multi-branch Siamese Network for High Performance Online Visual Tracking
    Zhuang, Junfei
    Dong, Yuan
    Bai, Hongliang
    Wang, Gang
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 519 - 534
  • [46] Siamese Network for Object Tracking in Aerial Video
    Zhao, Xiaoli
    Zhou, Shilin
    Lei, Lin
    Deng, Zhipeng
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC), 2018, : 519 - 523
  • [47] Triplet Loss in Siamese Network for Object Tracking
    Dong, Xingping
    Shen, Jianbing
    COMPUTER VISION - ECCV 2018, PT XIII, 2018, 11217 : 472 - 488
  • [48] Template Attentional Siamese Network for Object Tracking
    Gao, Junyan
    Yang, Zhenguo
    Liu, Wenyin
    PROCEEDINGS OF 2018 THE 2ND INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING (ICVIP 2018), 2018, : 218 - 221
  • [49] Adaptive Hierarchical Siamese Network for Object Tracking
    Fang, Yongfeng
    Wu, Yun
    Sun, Bingyu
    Cui, Chaoyuan
    PROCEEDINGS OF ICRCA 2018: 2018 THE 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, CONTROL AND AUTOMATION / ICRMV 2018: 2018 THE 3RD INTERNATIONAL CONFERENCE ON ROBOTICS AND MACHINE VISION, 2018, : 249 - 254
  • [50] Normalization free Siamese network for object tracking
    Gupta, Himanshu
    Verma, Om Prakash
    EXPERT SYSTEMS, 2022,