Online Siamese Network for Visual Object Tracking

被引:10
|
作者
Chang, Shuo [1 ]
Li, Wei [2 ]
Zhang, Yifan [1 ]
Feng, Zhiyong [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
[2] Northern Illinois Univ, Dept Elect Engn, De Kalb, IL 60115 USA
关键词
visual object tracking; Siamese network; improved contrastive loss; Bayesian verification;
D O I
10.3390/s19081858
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Offline-trained Siamese networks are not robust to the environmental complication in visual object tracking. Without online learning, the Siamese network cannot learn from instance domain knowledge and adapt to appearance changes of targets. In this paper, a new lightweight Siamese network is proposed for feature extraction. To cope with the dynamics of targets and backgrounds, the weight in the proposed Siamese network is updated in an online manner during the tracking process. In order to enhance the discrimination capability, the cross-entropy loss is integrated into the contrastive loss. Inspired by the face verification algorithm DeepID2, the Bayesian verification model is applied for candidate selection. In general, visual object tracking can benefit from face verification algorithms. Numerical results suggest that the newly developed algorithm achieves comparable performance in public benchmarks.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] SiamRAAN: Siamese Residual Attentional Aggregation Network for Visual Object Tracking
    Xin, Zhiyi
    Yu, Junyang
    He, Xin
    Song, Yalin
    Li, Han
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [22] Target-Cognisant Siamese Network for Robust Visual Object Tracking
    Jiang, Yingjie
    Song, Xiaoning
    Xu, Tianyang
    Feng, Zhenhua
    Wu, Xiaojun
    Kittler, Josef
    Pattern Recognition Letters, 2022, 163 : 129 - 135
  • [23] A novel Siamese Attention Network for visual object tracking of autonomous vehicles
    Chen, Jia
    Ai, Yibo
    Qian, Yuhan
    Zhang, Weidong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2021, 235 (10-11) : 2764 - 2775
  • [24] Target-Cognisant Siamese Network for Robust Visual Object Tracking *
    Jiang, Yingjie
    Song, Xiaoning
    Xu, Tianyang
    Feng, Zhenhua
    Wu, Xiaojun
    Kittler, Josef
    PATTERN RECOGNITION LETTERS, 2022, 163 : 129 - 135
  • [25] SiamRAAN: Siamese Residual Attentional Aggregation Network for Visual Object Tracking
    Zhiyi Xin
    Junyang Yu
    Xin He
    Yalin Song
    Han Li
    Neural Processing Letters, 56
  • [26] Learning saliency-awareness Siamese network for visual object tracking
    Yang, Peng
    Wang, Qinghui
    Dou, Jie
    Dou, Lei
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 103
  • [27] DomainSiam: Domain-Aware Siamese Network for Visual Object Tracking
    Abdelpakey, Mohamed H.
    Shehata, Mohamed S.
    ADVANCES IN VISUAL COMPUTING, ISVC 2019, PT I, 2020, 11844 : 45 - 58
  • [28] IOU - SIAMTRACK: IOU GUIDED SIAMESE NETWORK FOR VISUAL OBJECT TRACKING
    Dasari, Mohana Murali
    Gorthi, Rama Krishna Sai Subrahmanyam
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2061 - 2065
  • [29] Visual Tracking Algorithm Based on Online Feature Discrimination with Siamese Network
    Qiu Zhuling
    Zha Yufei
    Zhu Peng
    Wu Min
    ACTA OPTICA SINICA, 2019, 39 (09)
  • [30] Siamese adversarial network for object tracking
    Kim, H. -I.
    Park, R. -H.
    ELECTRONICS LETTERS, 2019, 55 (02) : 88 - +