Normal integral bases and Gaussian periods in the simplest cubic fields

被引:0
|
作者
Yu Hashimoto
Miho Aoki
机构
[1] Shimane University,Department of Mathematics, Interdisciplinary Faculty of Science and Engineering
来源
关键词
Normal integral basis; Simplest cubic field; Gaussian period; Period polynomial; Tamely ramified extension; Primary 11R04; 11R16; Secondary 11C08; 11L05; 11R80;
D O I
暂无
中图分类号
学科分类号
摘要
We give all normal integral bases for the simplest cubic field Ln\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_n$$\end{document} generated by the roots of Shanks’ cubic polynomial when these bases exist, that is, Ln/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_n/{\mathbb {Q}}$$\end{document} is tamely ramified. Furthermore, as an application of the result, we give an explicit relation between the roots of Shanks’ cubic polynomial and the Gaussian periods of Ln\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_n$$\end{document} in the case that Ln/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_n/{\mathbb {Q}}$$\end{document} is tamely ramified, which is a generalization of the work of Lehmer, Châtelet and Lazarus in the case that the conductor of Ln\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_n$$\end{document} is equal to n2+3n+9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^2+3n+9$$\end{document}.
引用
收藏
页码:157 / 173
页数:16
相关论文
共 50 条