Normal integral bases and Gaussian periods in the simplest cubic fields

被引:0
|
作者
Yu Hashimoto
Miho Aoki
机构
[1] Shimane University,Department of Mathematics, Interdisciplinary Faculty of Science and Engineering
来源
Annales mathématiques du Québec | 2024年 / 48卷
关键词
Normal integral basis; Simplest cubic field; Gaussian period; Period polynomial; Tamely ramified extension; Primary 11R04; 11R16; Secondary 11C08; 11L05; 11R80;
D O I
暂无
中图分类号
学科分类号
摘要
We give all normal integral bases for the simplest cubic field Ln\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_n$$\end{document} generated by the roots of Shanks’ cubic polynomial when these bases exist, that is, Ln/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_n/{\mathbb {Q}}$$\end{document} is tamely ramified. Furthermore, as an application of the result, we give an explicit relation between the roots of Shanks’ cubic polynomial and the Gaussian periods of Ln\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_n$$\end{document} in the case that Ln/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_n/{\mathbb {Q}}$$\end{document} is tamely ramified, which is a generalization of the work of Lehmer, Châtelet and Lazarus in the case that the conductor of Ln\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_n$$\end{document} is equal to n2+3n+9\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^2+3n+9$$\end{document}.
引用
收藏
页码:157 / 173
页数:16
相关论文
共 50 条
  • [41] Additive structure of non-monogenic simplest cubic fields
    Gil-Munoz, Daniel
    Tinkova, Magdalena
    RAMANUJAN JOURNAL, 2025, 66 (03):
  • [42] Power integral bases in cubic relative extensions
    Gaál, I
    EXPERIMENTAL MATHEMATICS, 2001, 10 (01) : 133 - 139
  • [43] p-integral bases of a cubic field
    Alaca, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (07) : 1949 - 1953
  • [44] Purely cubic function fields with short periods
    Scheidler, R
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1999, 54 (3-4): : 497 - 511
  • [45] Integral Bases for Subfields of Cyclotomic Fields
    Thomas Breuer
    Applicable Algebra in Engineering, Communication and Computing, 1997, 8 : 279 - 289
  • [46] INTEGRAL BASES IN ALGEBRAIC NUMBER FIELDS
    KOMATSU, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1975, 278 (NOV28): : 137 - 144
  • [47] Integral Bases and Monogenity of Composite Fields
    Gaal, Istvan
    Remete, Laszlo
    EXPERIMENTAL MATHEMATICS, 2019, 28 (02) : 209 - 222
  • [48] Integral bases for subfields of cyclotomic fields
    Breuer, T
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1997, 8 (04) : 279 - 289
  • [49] RELATIVE INTEGRAL BASES IN TOWERS OF FIELDS
    EDGAR, HM
    PETERSON, B
    AMERICAN MATHEMATICAL MONTHLY, 1981, 88 (03): : 217 - 217
  • [50] INTEGRAL BASES IN ALGEBRAIC NUMBER FIELDS
    KOMATSU, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1975, 278 : 137 - 144