Normal integral bases and Gaussian periods in the simplest cubic fields

被引:2
|
作者
Hashimoto, Yu [1 ]
Aoki, Miho [1 ]
机构
[1] Shimane Univ, Interdisciplinary Fac Sci & Engn, Dept Math, 1060 Nishikawatsu, Matsue, Shimane 6908504, Japan
来源
ANNALES MATHEMATIQUES DU QUEBEC | 2024年 / 48卷 / 01期
关键词
Normal integral basis; Simplest cubic field; Gaussian period; Period polynomial; Tamely ramified extension;
D O I
10.1007/s40316-022-00204-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give all normal integral bases for the simplest cubic field L-n generated by the roots of Shanks' cubic polynomial when these bases exist, that is, L-n/Q is tamely ramified. Furthermore, as an application of the result, we give an explicit relation between the roots of Shanks' cubic polynomial and the Gaussian periods of L-n in the case that L-n/Q is tamely ramified, which is a generalization of the work of Lehmer, Chatelet and Lazarus in the case that the conductor of L-n is equal to n(2) + 3n + 9.
引用
收藏
页码:157 / 173
页数:17
相关论文
共 50 条