Integral Operators Between Fock Spaces

被引:0
|
作者
Liu, Yongqing [1 ]
Hou, Shengzhao [2 ]
机构
[1] Changshu Inst Technol, Sch Math & Stat, Changshu 215500, Jiangsu, Peoples R China
[2] Soochow Univ, Sch Math Sci, Suzhou 215006, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Fock spaces; Integral operators; Normalized reproducing kernel;
D O I
10.1007/s11401-024-0016-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors study the integral operator S(phi)f(z) =integral(C)phi(z,w)f(w)d lambda(alpha)(w) induced by a kernel function phi(z,<middle dot>)is an element of F-alpha infinity between Fock spaces. For 1 <= p <= infinity, they prove that (phi):F-alpha(1)-> F-alpha(p) is bounded if and only if (a is an element of C)sup & Vert;S(phi)k(a)& Vert;(p,alpha)<infinity,(dagger) where k(a) is the normalized reproducing kernel of F-alpha(2); and,S-phi:F(alpha)1 -> F(alpha)(p )is compact if and only if (|a|->infinity)lim & Vert;S(phi)k(a)& Vert;(p,alpha)= 0. When 1< q <=infinity, it is also proved that the condition (dagger) is not sufficient for boundedness of S-phi:F-alpha(q)-> F-alpha(p). In the particular case phi(z,w) = e(alpha zw)phi(z-w) with phi is an element of F-alpha(2), for 1 <= q < p <infinity, they show that S-phi:F(alpha)p -> F-alpha(q) is bounded if and only i f phi= 0; for 1< p <= q <infinity, they give sufficient conditions for the boundedness or compactness of the operator S-phi:F-alpha(p)-> F-alpha(q).
引用
收藏
页码:265 / 278
页数:14
相关论文
共 50 条
  • [41] Integral Operators, Embedding Theorems and a Littlewood–Paley Formula on Weighted Fock Spaces
    Olivia Constantin
    José Ángel Peláez
    The Journal of Geometric Analysis, 2016, 26 : 1109 - 1154
  • [42] ON THE DIFFERENTIAL AND VOLTERRA-TYPE INTEGRAL OPERATORS ON FOCK-TYPE SPACES
    Mengestie, Tesfa
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2022, 63 (02): : 379 - 395
  • [43] Spectra and Power Boundedness of Volterra-Type Integral Operators on Fock Spaces
    Fekadiea, Zenaw Asnake
    Mengestie, Tesfa
    Takele, Mollalgn Haile
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2025, 48 (03)
  • [44] Dynamics of the Volterra-Type Integral and Differentiation Operators on Generalized Fock Spaces
    José Bonet
    Tesfa Mengestie
    Mafuz Worku
    Results in Mathematics, 2019, 74
  • [45] Dynamics of the Volterra-Type Integral and Differentiation Operators on Generalized Fock Spaces
    Bonet, Jose
    Mengestie, Tesfa
    Worku, Mafuz
    RESULTS IN MATHEMATICS, 2019, 74 (04)
  • [46] On the Spectrum of Volterra-Type Integral Operators on Fock-Sobolev Spaces
    Mengestie, Tesfa
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (06) : 1451 - 1461
  • [47] Linear Operators on Fock Spaces
    Zengjian Lou
    Kehe Zhu
    Senhua Zhu
    Integral Equations and Operator Theory, 2017, 88 : 287 - 300
  • [48] Differences of Products of Volterra Type Operators and Composition Operators Between Fock Spaces
    Hao, Pham The
    Tien, Pham Trong
    ACTA MATHEMATICA VIETNAMICA, 2025, : 123 - 141
  • [49] Linear Operators on Fock Spaces
    Lou, Zengjian
    Zhu, Kehe
    Zhu, Senhua
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2017, 88 (02) : 287 - 300
  • [50] Toeplitz operators with BMO and IMO symbols between Fock spaces
    Ermin Wang
    Archiv der Mathematik, 2020, 114 : 541 - 551