Integral Operators Between Fock Spaces

被引:0
|
作者
Liu, Yongqing [1 ]
Hou, Shengzhao [2 ]
机构
[1] Changshu Inst Technol, Sch Math & Stat, Changshu 215500, Jiangsu, Peoples R China
[2] Soochow Univ, Sch Math Sci, Suzhou 215006, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Fock spaces; Integral operators; Normalized reproducing kernel;
D O I
10.1007/s11401-024-0016-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors study the integral operator S(phi)f(z) =integral(C)phi(z,w)f(w)d lambda(alpha)(w) induced by a kernel function phi(z,<middle dot>)is an element of F-alpha infinity between Fock spaces. For 1 <= p <= infinity, they prove that (phi):F-alpha(1)-> F-alpha(p) is bounded if and only if (a is an element of C)sup & Vert;S(phi)k(a)& Vert;(p,alpha)<infinity,(dagger) where k(a) is the normalized reproducing kernel of F-alpha(2); and,S-phi:F(alpha)1 -> F(alpha)(p )is compact if and only if (|a|->infinity)lim & Vert;S(phi)k(a)& Vert;(p,alpha)= 0. When 1< q <=infinity, it is also proved that the condition (dagger) is not sufficient for boundedness of S-phi:F-alpha(q)-> F-alpha(p). In the particular case phi(z,w) = e(alpha zw)phi(z-w) with phi is an element of F-alpha(2), for 1 <= q < p <infinity, they show that S-phi:F(alpha)p -> F-alpha(q) is bounded if and only i f phi= 0; for 1< p <= q <infinity, they give sufficient conditions for the boundedness or compactness of the operator S-phi:F-alpha(p)-> F-alpha(q).
引用
收藏
页码:265 / 278
页数:14
相关论文
共 50 条
  • [21] Norms of composition operators between Fock spaces
    Jineng Dai
    Annals of Functional Analysis, 2020, 11 : 171 - 184
  • [22] Toeplitz operators between large Fock spaces
    Arroussi, Hicham
    He, Hua
    Li, Junfeng
    Tong, Cezhong
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (02)
  • [23] Norms of composition operators between Fock spaces
    Dai, Jineng
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (01) : 171 - 184
  • [24] HANKEL OPERATORS BETWEEN CLASSICAL FOCK SPACES
    Wang, Ermin
    Xu, Zhenghua
    HOUSTON JOURNAL OF MATHEMATICS, 2021, 47 (04): : 833 - 848
  • [25] Small Hankel operators between Fock spaces
    Wang, Ermin
    Hu, Zhangjian
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (03) : 409 - 419
  • [26] Toeplitz operators between large Fock spaces
    Hicham Arroussi
    Hua He
    Junfeng Li
    Cezhong Tong
    Banach Journal of Mathematical Analysis, 2022, 16
  • [27] Boundedness criterion for integral operators on the fractional Fock-Sobolev spaces
    Cao, Guangfu
    He, Li
    Li, Ji
    Shen, Minxing
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (04) : 3671 - 3693
  • [28] Kernel and integral representations of operators on infinite dimensional toy fock spaces
    Pautrat, Yan
    IN MEMORIAM PAUL-ANDRE MEYER: SEMINAIRE DE PROBABILITIES XXXIX, 2006, 1874 : 47 - 60
  • [29] Product of Volterra Type Integral and Composition Operators on Weighted Fock Spaces
    Mengestie, Tesfa
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (02) : 740 - 755
  • [30] On the Spectrum of Volterra-Type Integral Operators on Fock–Sobolev Spaces
    Tesfa Mengestie
    Complex Analysis and Operator Theory, 2017, 11 : 1451 - 1461