This paper consists of two parts. In the first part, we use symplectic homology to distinguish the contact structures on the Brieskorn manifolds Σ(2ℓ,2,2,2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varSigma (2\ell ,2,2,2)$$\end{document}, which contact homology cannot distinguish. This answers a question from Kwon and van Koert (Brieskorn manifolds in contact topology, preprint, 2013. arXiv:1310.0343). In the second part, we prove the existence of infinitely many exotic but homotopically trivial exotic contact structures on S7\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S^7$$\end{document}, distinguished by the mean Euler characteristic of S1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S^1$$\end{document}-equivariant symplectic homology. Apart from various connected sum constructions, these contact structures can be taken from the Brieskorn manifolds Σ(78k+1,13,6,3,3)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varSigma (78k+1,13,6,3,3)$$\end{document}. We end with some considerations about extending this result to higher dimensions.