Symplectic homology of some Brieskorn manifolds

被引:0
|
作者
Peter Uebele
机构
[1] Universität Augsburg,Institut für Mathematik
来源
Mathematische Zeitschrift | 2016年 / 283卷
关键词
Brieskorn manifolds; Symplectic homology; Mean Euler characteristic; Exotic contact structures on spheres; 53D10; 57R17; 53D40;
D O I
暂无
中图分类号
学科分类号
摘要
This paper consists of two parts. In the first part, we use symplectic homology to distinguish the contact structures on the Brieskorn manifolds Σ(2ℓ,2,2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma (2\ell ,2,2,2)$$\end{document}, which contact homology cannot distinguish. This answers a question from Kwon and van Koert (Brieskorn manifolds in contact topology, preprint, 2013. arXiv:1310.0343). In the second part, we prove the existence of infinitely many exotic but homotopically trivial exotic contact structures on S7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^7$$\end{document}, distinguished by the mean Euler characteristic of S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^1$$\end{document}-equivariant symplectic homology. Apart from various connected sum constructions, these contact structures can be taken from the Brieskorn manifolds Σ(78k+1,13,6,3,3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma (78k+1,13,6,3,3)$$\end{document}. We end with some considerations about extending this result to higher dimensions.
引用
收藏
页码:243 / 274
页数:31
相关论文
共 50 条