Cylindrical contact homology of 3-dimensional Brieskorn manifolds

被引:0
|
作者
Haney, Sebastian [1 ]
Mark, Thomas E.
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2022年 / 22卷 / 01期
关键词
D O I
10.2140/agt.2022.22.153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cylindrical contact homology for contact 3-manifolds is a comparatively simple incarnation of symplectic field theory whose existence and invariance under suitable hypotheses was recently established by Hutchings and Nelson (and, in a slightly different form, by Bao and Honda). We study this invariant for a general Brieskorn 3-manifold Sigma(a(1),....a(n)) and give a complete description of the cylindrical contact homology for this 3-manifold equipped with its natural contact structure for any a(j) satisfying 1/a(1) +...+1/a(n) < n - 2.
引用
收藏
页码:153 / 187
页数:35
相关论文
共 50 条
  • [1] Contact homology of Brieskorn manifolds
    van Koert, Otto
    FORUM MATHEMATICUM, 2008, 20 (02) : 317 - 339
  • [2] Matrices in companion rings, Smith forms, and the homology of 3-dimensional Brieskorn manifolds
    Noferini, Vanni
    Williams, Gerald
    JOURNAL OF ALGEBRA, 2021, 587 : 1 - 19
  • [3] HOMOLOGY OF GENERALIZED BRIESKORN MANIFOLDS
    RANDELL, RC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A401 - A401
  • [4] HOMOLOGY OF GENERALIZED BRIESKORN MANIFOLDS
    RANDELL, RC
    TOPOLOGY, 1975, 14 (04) : 347 - 355
  • [5] Symplectic homology of some Brieskorn manifolds
    Uebele, Peter
    MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (1-2) : 243 - 274
  • [6] Symplectic homology of some Brieskorn manifolds
    Peter Uebele
    Mathematische Zeitschrift, 2016, 283 : 243 - 274
  • [7] Brieskorn manifolds in contact topology
    Kwon, Myeonggi
    van Koert, Otto
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2016, 48 : 173 - 241
  • [8] On 3-dimensional generalized (κ, μ)-contact metric manifolds
    Shaikh, A. A.
    Arslan, K.
    Murathan, C.
    Baishya, K. K.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2007, 12 (01): : 122 - 134
  • [9] A Class of 3-dimensional Contact Metric Manifolds
    Irem Küpeli Erken
    Cengizhan Murathan
    Mediterranean Journal of Mathematics, 2013, 10 : 1979 - 1994
  • [10] A Class of 3-dimensional Contact Metric Manifolds
    Erken, Irem Kupeli
    Murathan, Cengizhan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (04) : 1979 - 1994