Cylindrical contact homology of 3-dimensional Brieskorn manifolds

被引:0
|
作者
Haney, Sebastian [1 ]
Mark, Thomas E.
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2022年 / 22卷 / 01期
关键词
D O I
10.2140/agt.2022.22.153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cylindrical contact homology for contact 3-manifolds is a comparatively simple incarnation of symplectic field theory whose existence and invariance under suitable hypotheses was recently established by Hutchings and Nelson (and, in a slightly different form, by Bao and Honda). We study this invariant for a general Brieskorn 3-manifold Sigma(a(1),....a(n)) and give a complete description of the cylindrical contact homology for this 3-manifold equipped with its natural contact structure for any a(j) satisfying 1/a(1) +...+1/a(n) < n - 2.
引用
收藏
页码:153 / 187
页数:35
相关论文
共 50 条
  • [41] Contact homology of toroid manifolds
    Bourgeois, F
    Colin, V
    GEOMETRY & TOPOLOGY, 2005, 9 : 299 - 313
  • [42] SMOOTHING OF MAPPINGS OF 3-DIMENSIONAL MANIFOLDS
    BOEHME, H
    PACIFIC JOURNAL OF MATHEMATICS, 1975, 61 (01) : 45 - 51
  • [43] CONFORMAL STRUCTURES ON 3-DIMENSIONAL MANIFOLDS
    GUSEVSKII, NA
    KAPOVICH, ME
    DOKLADY AKADEMII NAUK SSSR, 1986, 290 (03): : 537 - 541
  • [44] On 3-dimensional asymptotically harmonic manifolds
    Viktor Schroeder
    Hemangi Shah
    Archiv der Mathematik, 2008, 90 : 275 - 278
  • [45] ON DEFORMATIONS OF 3-DIMENSIONAL RATIONAL MANIFOLDS
    TIMMERSCHEIDT, K
    MATHEMATISCHE ANNALEN, 1982, 258 (03) : 267 - 275
  • [46] On 3-dimensional asymptotically harmonic manifolds
    Schroeder, Viktor
    Shah, Hemangi
    ARCHIV DER MATHEMATIK, 2008, 90 (03) : 275 - 278
  • [47] 3-dimensional F-manifolds
    Alexey Basalaev
    Claus Hertling
    Letters in Mathematical Physics, 2021, 111
  • [48] On 3-dimensional (LCS)(n) manifolds
    Srivastava, Sunil Kumar
    Srivastava, Vibhawari
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2014, 8 (02): : 180 - 186
  • [49] 3-dimensional F-manifolds
    Basalaev, Alexey
    Hertling, Claus
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (04)
  • [50] COMPLEXITY THEORY OF 3-DIMENSIONAL MANIFOLDS
    MATVEEV, SV
    ACTA APPLICANDAE MATHEMATICAE, 1990, 19 (02) : 101 - 130