Symplectic homology of some Brieskorn manifolds

被引:0
|
作者
Peter Uebele
机构
[1] Universität Augsburg,Institut für Mathematik
来源
Mathematische Zeitschrift | 2016年 / 283卷
关键词
Brieskorn manifolds; Symplectic homology; Mean Euler characteristic; Exotic contact structures on spheres; 53D10; 57R17; 53D40;
D O I
暂无
中图分类号
学科分类号
摘要
This paper consists of two parts. In the first part, we use symplectic homology to distinguish the contact structures on the Brieskorn manifolds Σ(2ℓ,2,2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma (2\ell ,2,2,2)$$\end{document}, which contact homology cannot distinguish. This answers a question from Kwon and van Koert (Brieskorn manifolds in contact topology, preprint, 2013. arXiv:1310.0343). In the second part, we prove the existence of infinitely many exotic but homotopically trivial exotic contact structures on S7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^7$$\end{document}, distinguished by the mean Euler characteristic of S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^1$$\end{document}-equivariant symplectic homology. Apart from various connected sum constructions, these contact structures can be taken from the Brieskorn manifolds Σ(78k+1,13,6,3,3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma (78k+1,13,6,3,3)$$\end{document}. We end with some considerations about extending this result to higher dimensions.
引用
收藏
页码:243 / 274
页数:31
相关论文
共 50 条
  • [41] Open book decompositions for contact structures on Brieskorn manifolds
    Van Koert, O
    Niederkrüger, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) : 3679 - 3686
  • [42] CALCULUS ON SYMPLECTIC MANIFOLDS
    Eastwood, Michael
    Slovak, Jan
    ARCHIVUM MATHEMATICUM, 2018, 54 (05): : 265 - 280
  • [43] SYMPLECTIC STIEFEL MANIFOLDS
    SIGRIST, F
    SUTER, U
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1972, 52 (04): : 493 - 497
  • [44] Subflexible symplectic manifolds
    Murphy, Emmy
    Siegel, Kyler
    GEOMETRY & TOPOLOGY, 2018, 22 (04) : 2367 - 2401
  • [45] Convex symplectic manifolds
    Eliashberg, Yakov
    Gromov, Mikhael
    Proceedings of Symposia in Pure Mathematics, 1600,
  • [46] ALMOST CONTACT STRUCTURES ON BRIESKORN MANIFOLDS AND COMPLEX STRUCTURES ON THEIR PRODUCTS
    ABE, K
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (02): : A324 - A324
  • [47] Symplectic toric manifolds
    da Silva, AC
    SYMPLECTIC GEOMETRY OF INTEGRABLE HAMILTONIAN SYSTEMS, 2003, : 85 - +
  • [48] Brieskorn Manifolds, Generalized Sieradski Groups, and Coverings of Lens Spaces
    A. Yu. Vesnin
    T. A. Kozlovskaya
    Proceedings of the Steklov Institute of Mathematics, 2019, 304 : S175 - S185
  • [49] Symplectic surfaces in symplectic 4-manifolds
    Cho, MS
    Cho, YS
    TAIWANESE JOURNAL OF MATHEMATICS, 2003, 7 (01): : 77 - 87
  • [50] Perturbed Floer homology of some fibered three-manifolds
    Wu, Zhongtao
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2009, 9 (01): : 337 - 350