Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth

被引:0
|
作者
Bildhauer M.
Fuchs M.
机构
关键词
Sobolev Space; Minimum Problem; Variational Problem; Original Problem; Dirichlet Boundary;
D O I
10.1023/A:1014436106908
中图分类号
学科分类号
摘要
The minimum problem ∫Ωf(∇u)dx → min among the mappings u: ℝn ⊃ Ω → ℝN with prescribed Dirichlet boundary data and for integrands f of linear growth in general fails to have solutions in the Sobolev space W11. We therefore concentrate on the dual variational problem, which admits a unique maximizer σ, and prove the partial Hölder continuity of σ. Moreover, we study smoothness properties of the L1-limits of minimizing sequences of the original problem. ©2002 Plenum Publishing Corporation.
引用
收藏
页码:1835 / 1850
页数:15
相关论文
共 50 条
  • [1] ON THE REGULARITY OF WEAK SOLUTIONS OF VARIATIONAL-PROBLEMS IN THE THEORY OF PLASTICITY
    SEREGIN, GA
    [J]. DOKLADY AKADEMII NAUK SSSR, 1990, 314 (06): : 1344 - 1349
  • [2] Regularity for minimizing sequences of some variational integrals
    Hongya Gao
    Yanan Shan
    Wei Ren
    [J]. Science China Mathematics, 2023, 66 (04) : 777 - 798
  • [3] Regularity for minimizing sequences of some variational integrals
    Gao, Hongya
    Shan, Yanan
    Ren, Wei
    [J]. SCIENCE CHINA-MATHEMATICS, 2023, 66 (04) : 777 - 798
  • [4] Regularity for minimizing sequences of some variational integrals
    Hongya Gao
    Yanan Shan
    Wei Ren
    [J]. Science China Mathematics, 2023, 66 : 777 - 798
  • [5] Regularity of variational solutions to linear boundary value problems in Lipschitz domains
    Agranovich, M. S.
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2006, 40 (04) : 313 - 329
  • [6] Regularity of variational solutions to linear boundary value problems in Lipschitz domains
    M. S. Agranovich
    [J]. Functional Analysis and Its Applications, 2006, 40 : 313 - 329
  • [7] Minimizing sequences of variational problems with small parameters
    Ming-kang Ni
    Wu-zhong Lin
    [J]. Applied Mathematics and Mechanics, 2009, 30 : 695 - 701
  • [8] Minimizing sequences of variational problems with small parameters
    倪明康
    林武忠
    [J]. Applied Mathematics and Mechanics(English Edition), 2009, 30 (06) : 695 - 701
  • [9] ON THE COMPACTNESS OF MINIMIZING SEQUENCES OF VARIATIONAL-PROBLEMS
    SBORDONE, C
    [J]. LECTURE NOTES IN MATHEMATICS, 1983, 979 : 240 - 255
  • [10] Minimizing sequences of variational problems with small parameters
    Ni, Ming-kang
    Lin, Wu-zhong
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2009, 30 (06) : 695 - 701