Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth

被引:0
|
作者
Bildhauer M.
Fuchs M.
机构
关键词
Sobolev Space; Minimum Problem; Variational Problem; Original Problem; Dirichlet Boundary;
D O I
10.1023/A:1014436106908
中图分类号
学科分类号
摘要
The minimum problem ∫Ωf(∇u)dx → min among the mappings u: ℝn ⊃ Ω → ℝN with prescribed Dirichlet boundary data and for integrands f of linear growth in general fails to have solutions in the Sobolev space W11. We therefore concentrate on the dual variational problem, which admits a unique maximizer σ, and prove the partial Hölder continuity of σ. Moreover, we study smoothness properties of the L1-limits of minimizing sequences of the original problem. ©2002 Plenum Publishing Corporation.
引用
收藏
页码:1835 / 1850
页数:15
相关论文
共 50 条