Minimizing sequences of variational problems with small parameters

被引:0
|
作者
Ming-kang Ni
Wu-zhong Lin
机构
[1] East China Normal University,Department of Mathematics
[2] E-Institute of Shanghai Universities at SJTU,Division of Computational Science
来源
关键词
small parameter; variational problem; minimizing sequence; O175.14; 34E20; 34B15;
D O I
暂无
中图分类号
学科分类号
摘要
A class of variational problems with small parameters is studied. Their zeroth-order asymptotic solutions are constructed. It is shown that the zeroth-order asymptotic solution is just the minimizing sequence of variational problems as the small parameter approaches to zero.
引用
收藏
页码:695 / 701
页数:6
相关论文
共 50 条
  • [1] Minimizing sequences of variational problems with small parameters
    倪明康
    林武忠
    [J]. Applied Mathematics and Mechanics(English Edition), 2009, 30 (06) : 695 - 701
  • [2] Minimizing sequences of variational problems with small parameters
    Ni, Ming-kang
    Lin, Wu-zhong
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2009, 30 (06) : 695 - 701
  • [3] ON THE COMPACTNESS OF MINIMIZING SEQUENCES OF VARIATIONAL-PROBLEMS
    SBORDONE, C
    [J]. LECTURE NOTES IN MATHEMATICS, 1983, 979 : 240 - 255
  • [4] THE CONSTRUCTION OF MINIMIZING SEQUENCES IN PROBLEMS OF THE CONTROL OF SYSTEMS WITH DISTRIBUTED PARAMETERS
    PLOTNIKOV, VI
    SUMIN, MI
    [J]. USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1982, 22 (01): : 49 - 57
  • [5] Regularity for minimizing sequences of some variational integrals
    Gao, Hongya
    Shan, Yanan
    Ren, Wei
    [J]. SCIENCE CHINA-MATHEMATICS, 2023, 66 (04) : 777 - 798
  • [6] Regularity for minimizing sequences of some variational integrals
    Hongya Gao
    Yanan Shan
    Wei Ren
    [J]. Science China Mathematics, 2023, 66 (04) : 777 - 798
  • [7] Regularity for minimizing sequences of some variational integrals
    Hongya Gao
    Yanan Shan
    Wei Ren
    [J]. Science China Mathematics, 2023, 66 : 777 - 798
  • [8] Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth
    Bildhauer M.
    Fuchs M.
    [J]. Journal of Mathematical Sciences, 2002, 109 (5) : 1835 - 1850
  • [10] CONVERGENCE OF MINIMIZING SEQUENCES IN CONDITIONAL EXTREMUM PROBLEMS
    LEVITIN, ES
    POLYAK, BT
    [J]. DOKLADY AKADEMII NAUK SSSR, 1966, 168 (05): : 997 - &