Multifractal Formalism for Almost all Self-Affine Measures

被引:0
|
作者
Julien Barral
De-Jun Feng
机构
[1] Institut Galilée,LAGA (UMR 7539), Département de Mathématiques
[2] Université Paris 13,Department of Mathematics
[3] The Chinese University of Hong Kong,undefined
来源
关键词
Hausdorff Dimension; Gibbs Measure; Iterate Function System; Borel Probability Measure; Multifractal Analysis;
D O I
暂无
中图分类号
学科分类号
摘要
We conduct the multifractal analysis of self-affine measures for “almost all” family of affine maps. Besides partially extending Falconer’s formula of Lq-spectrum outside the range 1 < q ≤ 2, the multifractal formalism is also partially verified.
引用
收藏
页码:473 / 504
页数:31
相关论文
共 50 条
  • [31] Fourier decay for homogeneous self-affine measures
    Solomyak, Boris
    [J]. JOURNAL OF FRACTAL GEOMETRY, 2022, 9 (1-2) : 193 - 206
  • [32] Weighted Fourier frames on self-affine measures
    Dutkay, Dorin Ervin
    Ranasinghe, Rajitha
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 1032 - 1047
  • [33] On the Spectra of Self-Affine Measures with Three Digits
    Deng, Q. -R.
    Wang, X. -Y.
    [J]. ANALYSIS MATHEMATICA, 2019, 45 (02) : 267 - 289
  • [34] Spectrum of self-affine measures on the Sierpinski family
    Megala, M.
    Prasad, Srijanani Anurag
    [J]. MONATSHEFTE FUR MATHEMATIK, 2024, 204 (01): : 157 - 169
  • [35] Generalized dimensions of measures on self-affine sets
    Falconer, KJ
    [J]. NONLINEARITY, 1999, 12 (04) : 877 - 891
  • [36] The Assouad dimension of self-affine measures on sponges
    Fraser, Jonathan M.
    Kolossvary, Istvan
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (09) : 2974 - 2996
  • [37] Spectral Property of Self-Affine Measures on Rn
    Wang, Zhiyong
    Liu, Jingcheng
    Su, Juan
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (05)
  • [38] THE DIMENSION OF PROJECTIONS OF SELF-AFFINE SETS AND MEASURES
    Falconer, Kenneth
    Kempton, Tom
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (01) : 473 - 486
  • [39] Spectrum of self-affine measures on the Sierpinski family
    M. Megala
    Srijanani Anurag Prasad
    [J]. Monatshefte für Mathematik, 2024, 204 : 157 - 169
  • [40] Spectral self-affine measures with prime determinant
    Li, Jian-Lin
    [J]. MONATSHEFTE FUR MATHEMATIK, 2013, 169 (3-4): : 397 - 407