Spectrum of self-affine measures on the Sierpinski family

被引:0
|
作者
M. Megala
Srijanani Anurag Prasad
机构
[1] Indian Institute of Technology Tirupati,Department of Mathematics and Statistics
来源
关键词
Iterated function system; Self-affine measure; Spectrum; Compatible pair; Digit set; 28A80; 42C05; 46C05;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, a spectrum Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} for the integral Sierpinski measures μM,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M, D}$$\end{document} with the digit set D=00,10,01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ D= \left\{ \begin{pmatrix} 0\\ 0 \end{pmatrix}, \begin{pmatrix} 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}\right\} $$\end{document} is derived for a 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \times 2$$\end{document} diagonal matrix M with entries as 3ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\ell _1$$\end{document} and 3ℓ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\ell _4$$\end{document} and for off-diagonal matrix M with both the off-diagonal entries as 3ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\ell $$\end{document} where, ℓ,ℓ1,ℓ4∈Z\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ,\ell _1,\ell _4 \in {\mathbb {Z}}{\setminus }{\{0\}}$$\end{document}. Additionally, the spectrum of μM,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M, D}$$\end{document} for a given M and a generalized digit set D is also examined. The spectrum of self-affine measures μM,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M, D}$$\end{document} on spatial Sierpinski gasket is obtained when M is diagonal matrix with entries ℓi∈2Z\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _i \in 2{\mathbb {Z}}\setminus {\{0\}}$$\end{document}, sign of ℓi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _i$$\end{document}’s are same and D={0,e1,e2,e3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D=\{0, e_1, e_2, e_3\}$$\end{document}, where ei′s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_i's $$\end{document} are the standard basis in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document}. Further, the spectrum of μM,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M, D}$$\end{document} for some off-diagonal 3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\times 3$$\end{document} matrices is also found.
引用
收藏
页码:157 / 169
页数:12
相关论文
共 50 条
  • [1] Spectrum of self-affine measures on the Sierpinski family
    Megala, M.
    Prasad, Srijanani Anurag
    MONATSHEFTE FUR MATHEMATIK, 2024, 204 (01): : 157 - 169
  • [2] Spectral self-affine measures on the planar Sierpinski family
    LI JianLin
    ScienceChina(Mathematics), 2013, 56 (08) : 1621 - 1630
  • [3] Spectral self-affine measures on the planar Sierpinski family
    Li JianLin
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (08) : 1619 - 1628
  • [4] Spectral self-affine measures on the planar Sierpinski family
    JianLin Li
    Science China Mathematics, 2013, 56 : 1619 - 1628
  • [5] Gibbs measures on self-affine Sierpinski carpets and their singularity spectrum
    Barral, Julien
    Mensi, Mounir
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 1419 - 1443
  • [6] Spectral self-affine measures on the spatial Sierpinski gasket
    Li, Jian-Lin
    MONATSHEFTE FUR MATHEMATIK, 2015, 176 (02): : 293 - 322
  • [7] Spectral self-affine measures on the spatial Sierpinski gasket
    Jian-Lin Li
    Monatshefte für Mathematik, 2015, 176 : 293 - 322
  • [8] On the spectra of Sierpinski-type self-affine measures
    Deng, Qi-Rong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (12) : 4426 - 4442
  • [9] Spectrality of Sierpinski-type self-affine measures
    Lu, Zheng-Yi
    Dong, Xin-Han
    Liu, Zong-Sheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (03)
  • [10] Spectrality of generalized Sierpinski-type self-affine measures
    Liu, Jing-Cheng
    Zhang, Ying
    Wang, Zhi-Yong
    Chen, Ming-Liang
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 55 : 129 - 148