In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging

被引:0
|
作者
Artzi, Natalie [1 ,2 ]
Oliva, Nuria [1 ,3 ]
Puron, Cristina [1 ,3 ]
Shitreet, Sagi [1 ,4 ]
Artzi, Shay [5 ]
Ramos, Adriana Bon [1 ,3 ]
Groothuis, Adam [6 ]
Sahagian, Gary [7 ]
Edelman, Elazer R. [1 ]
机构
[1] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[2] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dept Anesthesiol, Boston, MA 02115 USA
[3] Univ Ramon Llull, Inst Quim Sarria, Barcelona 08017, Spain
[4] Ort Braude Coll, IL-21982 Karmiel, Israel
[5] IBM Res, Hawthorne, NY 10532 USA
[6] Concord Biomed Sci & Emerging Technol, Lexington, MA 02421 USA
[7] Tufts Univ, Sch Med, Dept Physiol, Boston, MA 02111 USA
关键词
TISSUE ENGINEERING APPLICATIONS; SKELETAL-MUSCLE TISSUE; POLY(ETHYLENE GLYCOL); POLYMER DEGRADATION; DELIVERY; RELEASE; BIOMATERIALS; SCAFFOLDS; HYDROGELS; ADHESIVE;
D O I
10.1038/NMAT3095
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design of erodible biomaterials relies on the ability to program the in vivo retention time, which necessitates realtime monitoring of erosion. However, in vivo performance cannot always be predicted by traditional determination of in vitro erosion(1,2), and standard methods sacrifice samples or animals(3), preventing sequential measures of the same specimen. We harnessed non-invasive fluorescence imaging to sequentially follow in vivo material-mass loss to model the degradation of materials hydrolytically (PEG: dextran hydrogel) and enzymatically (collagen). Hydrogel erosion rates in vivo and in vitro correlated, enabling the prediction of in vivo erosion of new material formulations from in vitro data. Collagen in vivo erosion was used to infer physiologic in vitro conditions that mimic erosive in vivo environments. This approach enables rapid in vitro screening of materials, and can be extended to simultaneously determine drug release and material erosion from a drug-eluting scaffold, or cell viability and material fate in tissue-engineering formulations.
引用
收藏
页码:704 / 709
页数:6
相关论文
共 50 条
  • [41] Non-invasive detection of aflatoxin-contaminated figs using fluorescence and multispectral imaging
    Kalkan, Habil
    Gunes, Ali
    Durmus, Efkan
    Kuscu, Alper
    FOOD ADDITIVES AND CONTAMINANTS PART A-CHEMISTRY ANALYSIS CONTROL EXPOSURE & RISK ASSESSMENT, 2014, 31 (08): : 1414 - 1421
  • [42] Non-Invasive Imaging Modalities for Stem Cells Tracking in Osteoarthritis
    Hengameh Dortaj
    Ali Akbar Alizadeh
    Negar Azarpira
    Lobat Tayebi
    Regenerative Engineering and Translational Medicine, 2024, 10 : 9 - 18
  • [43] Non-invasive in vivo imaging of transferrin in breast cancer xenografts using fluorescence lifetime FRET: Implications in the development of targeted therapy
    Rajoria, S.
    Zhao, L.
    Intes, X.
    Barroso, M. M.
    MOLECULAR BIOLOGY OF THE CELL, 2013, 24
  • [44] Non-invasive imaging of embryo metabolism in response to anoxia using fluorescence lifetime imaging microscopy (FLIM)
    Seidler, E.
    Sanchez, T.
    Pedro, M. Venturas
    Sakkas, D.
    Penzias, A.
    Needleman, D.
    HUMAN REPRODUCTION, 2018, 33 : 15 - 16
  • [45] Non-invasive assessment of the liver using imaging
    Thorling , Camilla
    Wang, Haolu
    Liu, Xin
    Liang, Xiaowen
    Crawford, Darrell H. G.
    Roberts, Michael S.
    SPIE BIOPHOTONICS AUSTRALASIA, 2016, 10013
  • [46] Imaging the pancreas: from ex vivo to non-invasive technology
    Holmberg, D.
    Ahlgren, U.
    DIABETOLOGIA, 2008, 51 (12) : 2148 - 2154
  • [47] Non-Invasive imaging of extracellular vesicles: Quo vaditis in vivo?
    Arifin, Dian R.
    Witwer, Kenneth W.
    Bulte, Jeff W. M.
    JOURNAL OF EXTRACELLULAR VESICLES, 2022, 11 (07)
  • [48] Imaging the pancreas: from ex vivo to non-invasive technology
    D. Holmberg
    U. Ahlgren
    Diabetologia, 2008, 51
  • [49] In Vivo, Non-invasive Visualisation of Perifoveal Capillaries Using Multiwavelength Scanning Laser Imaging
    Clemo, Monica
    Sim, Dawn A.
    Hanumunthadu, Daren
    Patel, Praveen J.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (13)
  • [50] A FRET Sensor for Non-Invasive Imaging of Amyloid Formation in Vivo
    Schierle, Gabriele S. Kaminski
    Bertoncini, Carlos W.
    Chan, Fiona T. S.
    van der Goot, Annemieke T.
    Schwedler, Stefanie
    Skepper, Jeremy
    Schlachter, Simon
    van Ham, Tjakko
    Esposito, Alessandro
    Kumita, Janet R.
    Nollen, Ellen A. A.
    Dobson, Christopher M.
    Kaminski, Clemens F.
    CHEMPHYSCHEM, 2011, 12 (03) : 673 - 680