In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging

被引:0
|
作者
Artzi, Natalie [1 ,2 ]
Oliva, Nuria [1 ,3 ]
Puron, Cristina [1 ,3 ]
Shitreet, Sagi [1 ,4 ]
Artzi, Shay [5 ]
Ramos, Adriana Bon [1 ,3 ]
Groothuis, Adam [6 ]
Sahagian, Gary [7 ]
Edelman, Elazer R. [1 ]
机构
[1] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[2] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dept Anesthesiol, Boston, MA 02115 USA
[3] Univ Ramon Llull, Inst Quim Sarria, Barcelona 08017, Spain
[4] Ort Braude Coll, IL-21982 Karmiel, Israel
[5] IBM Res, Hawthorne, NY 10532 USA
[6] Concord Biomed Sci & Emerging Technol, Lexington, MA 02421 USA
[7] Tufts Univ, Sch Med, Dept Physiol, Boston, MA 02111 USA
关键词
TISSUE ENGINEERING APPLICATIONS; SKELETAL-MUSCLE TISSUE; POLY(ETHYLENE GLYCOL); POLYMER DEGRADATION; DELIVERY; RELEASE; BIOMATERIALS; SCAFFOLDS; HYDROGELS; ADHESIVE;
D O I
10.1038/NMAT3095
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design of erodible biomaterials relies on the ability to program the in vivo retention time, which necessitates realtime monitoring of erosion. However, in vivo performance cannot always be predicted by traditional determination of in vitro erosion(1,2), and standard methods sacrifice samples or animals(3), preventing sequential measures of the same specimen. We harnessed non-invasive fluorescence imaging to sequentially follow in vivo material-mass loss to model the degradation of materials hydrolytically (PEG: dextran hydrogel) and enzymatically (collagen). Hydrogel erosion rates in vivo and in vitro correlated, enabling the prediction of in vivo erosion of new material formulations from in vitro data. Collagen in vivo erosion was used to infer physiologic in vitro conditions that mimic erosive in vivo environments. This approach enables rapid in vitro screening of materials, and can be extended to simultaneously determine drug release and material erosion from a drug-eluting scaffold, or cell viability and material fate in tissue-engineering formulations.
引用
收藏
页码:704 / 709
页数:6
相关论文
共 50 条
  • [31] Non-invasive in vivo characterization of microclimate pH inside in situ forming PLGA implants using multispectral fluorescence imaging
    Schaedlich, Andreas
    Kempe, Sabine
    Maeder, Karsten
    JOURNAL OF CONTROLLED RELEASE, 2014, 179 : 52 - 62
  • [32] Real-time and non-invasive fluorescence tracking of in vivo degradation of the thermosensitive PEGlyated polyester hydrogel
    Wang, Weiwei
    Liu, Jinjian
    Li, Chen
    Zhang, Ju
    Liu, Jianfeng
    Dong, Anjie
    Kong, Deling
    JOURNAL OF MATERIALS CHEMISTRY B, 2014, 2 (26) : 4185 - 4192
  • [33] Non-invasive imaging of skin cancer with fluorescence lifetime imaging using two photon tomography
    Patalay, Rakesh
    Talbot, Clifford
    Alexandrov, Yuriy
    Munro, Ian
    Breunig, Hans Georg
    Koenig, Karsten
    Warren, Sean
    Neil, Mark A. A.
    French, Paul M. W.
    Chu, Anthony
    Stamp, Gordon W.
    Dunsby, Chris
    CLINICAL AND BIOMEDICAL SPECTROSCOPY AND IMAGING II, 2011, 8087
  • [34] In Vivo Non-Invasive Tracking of Macrophage Recruitment to Experimental Stroke
    Selt, Marion
    Tennstaedt, Annette
    Beyrau, Andreas
    Nelles, Melanie
    Schneider, Gabriele
    Lowik, Clemens
    Hoehn, Mathias
    PLOS ONE, 2016, 11 (06):
  • [35] Non-invasive tumor detection using spectrally-resolved in vivo imaging
    Kostenich, G
    Kimel, S
    Malik, Z
    Orenstein, A
    OPTICAL BIOPSY AND TISSUE OPTICS, 2000, 4161 : 244 - 251
  • [36] Genetically encodable materials for non-invasive biological imaging
    Arash Farhadi
    Felix Sigmund
    Gil Gregor Westmeyer
    Mikhail G. Shapiro
    Nature Materials, 2021, 20 : 585 - 592
  • [37] Genetically encodable materials for non-invasive biological imaging
    Farhadi, Arash
    Sigmund, Felix
    Westmeyer, Gil Gregor
    Shapiro, Mikhail G.
    NATURE MATERIALS, 2021, 20 (05) : 585 - 592
  • [38] Non-Invasive Imaging Modalities for Stem Cells Tracking in Osteoarthritis
    Dortaj, Hengameh
    Alizadeh, Ali Akbar
    Azarpira, Negar
    Tayebi, Lobat
    REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE, 2024, 10 (01) : 9 - 18
  • [39] Activatable probes for non-invasive small animal fluorescence imaging
    Texier, Isabelle
    Razkin, Jesus
    Josserand, Veronique
    Boturyn, Didier
    Dumy, Pascal
    Coll, Jean-Luc
    Rizo, Philippe
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 571 (1-2): : 165 - 168
  • [40] Gold nanoparticles for non-invasive cell tracking with CT imaging
    Meir, Rinat
    Betzer, Oshra
    Barnoy, Eran
    Motiei, Menachem
    Popovtzer, Rachela
    NANOSCALE IMAGING, SENSING, AND ACTUATION FOR BIOMEDICAL APPLICATIONS XV, 2018, 10506