Influence on Smoothness in Penalized Likelihood Regression for Binary Data

被引:0
|
作者
Robert Jernigan
Julie O’Connell
机构
[1] American University,Department of Mathematics and Statistics
来源
Computational Statistics | 2001年 / 16卷
关键词
Smoothing parameter; Sensitivity; Gross change; Cross-validation; Smoothing spline; Logistic regression;
D O I
暂无
中图分类号
学科分类号
摘要
Penalized likelihood is a nonparametric regression technique which can be used to estimate a mean function for binary data. We wish to measure the sensitivity of the smoothing parameter to gross changes in the data when the optimal value of the smoothing parameter is selected using generalized cross-validation. Since penalized likelihood curve fitting requires both a grid search to determine the optimal value of the smoothing parameter and iterative solution for each grid point, naive calculations to determine the change in the optimal value of the smoothing parameter when each data value is modified are computationally intensive and time-consuming. We have developed techniques based on mathematical and numerical approximations for measuring sensitivity in penalized likelihood regression with binary data. These techniques have been applied to selected data sets to compute change in the smoothing parameter resulting from changes in individual data values.
引用
收藏
页码:481 / 504
页数:23
相关论文
共 50 条
  • [1] Influence on smoothness in penalized likelihood regression for binary data
    Jernigan, R
    O'Connell, J
    [J]. COMPUTATIONAL STATISTICS, 2001, 16 (04) : 481 - 504
  • [2] PENALIZED LIKELIHOOD FUNCTIONAL REGRESSION
    Du, Pang
    Wang, Xiao
    [J]. STATISTICA SINICA, 2014, 24 (02) : 1017 - 1041
  • [3] PENALIZED LIKELIHOOD IN COX REGRESSION
    VERWEIJ, PJM
    VANHOUWELINGEN, HC
    [J]. STATISTICS IN MEDICINE, 1994, 13 (23-24) : 2427 - 2436
  • [4] LASSO type penalized spline regression for binary data
    Mullah, Muhammad Abu Shadeque
    Hanley, James A.
    Benedetti, Andrea
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2021, 21 (01)
  • [5] LASSO type penalized spline regression for binary data
    Muhammad Abu Shadeque Mullah
    James A. Hanley
    Andrea Benedetti
    [J]. BMC Medical Research Methodology, 21
  • [6] Variable Selection for Binary Spatial Regression: Penalized Quasi-Likelihood Approach
    Feng, Wenning
    Sarkar, Abdhi
    Lim, Chae Young
    Maiti, Tapabrata
    [J]. BIOMETRICS, 2016, 72 (04) : 1164 - 1172
  • [7] Smoothness Selection for Penalized Quantile Regression Splines
    Reiss, Philip T.
    Huang, Lei
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2012, 8 (01):
  • [8] Support vector regression with penalized likelihood
    Uemoto, Takumi
    Naito, Kanta
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 174
  • [9] Approximate Bayesian logistic regression via penalized likelihood by data augmentation
    Discacciati, Andrea
    Orsini, Nicola
    Greenland, Sander
    [J]. Stata Journal, 2015, 15 (03): : 712 - 736
  • [10] Penalized empirical likelihood for longitudinal expectile regression with growing dimensional data
    Zhang, Ting
    Wang, Yanan
    Wang, Lei
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2024, 53 (03) : 752 - 773