Influence on Smoothness in Penalized Likelihood Regression for Binary Data

被引:0
|
作者
Robert Jernigan
Julie O’Connell
机构
[1] American University,Department of Mathematics and Statistics
来源
Computational Statistics | 2001年 / 16卷
关键词
Smoothing parameter; Sensitivity; Gross change; Cross-validation; Smoothing spline; Logistic regression;
D O I
暂无
中图分类号
学科分类号
摘要
Penalized likelihood is a nonparametric regression technique which can be used to estimate a mean function for binary data. We wish to measure the sensitivity of the smoothing parameter to gross changes in the data when the optimal value of the smoothing parameter is selected using generalized cross-validation. Since penalized likelihood curve fitting requires both a grid search to determine the optimal value of the smoothing parameter and iterative solution for each grid point, naive calculations to determine the change in the optimal value of the smoothing parameter when each data value is modified are computationally intensive and time-consuming. We have developed techniques based on mathematical and numerical approximations for measuring sensitivity in penalized likelihood regression with binary data. These techniques have been applied to selected data sets to compute change in the smoothing parameter resulting from changes in individual data values.
引用
收藏
页码:481 / 504
页数:23
相关论文
共 50 条
  • [21] Penalized likelihood estimators for truncated data
    Cope, Eric W.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (01) : 345 - 358
  • [22] PENALIZED LIKELIHOOD FOR GENERAL SEMIPARAMETRIC REGRESSION-MODELS
    GREEN, PJ
    [J]. INTERNATIONAL STATISTICAL REVIEW, 1987, 55 (03) : 245 - 259
  • [23] Penalized likelihood and Bayesian function selection in regression models
    Fabian Scheipl
    Thomas Kneib
    Ludwig Fahrmeir
    [J]. AStA Advances in Statistical Analysis, 2013, 97 : 349 - 385
  • [24] Maximum Penalized Likelihood Kernel Regression for Fast Adaptation
    Mak, Brian Kan-Wing
    Lai, Tsz-Chung
    Tsang, Ivor W.
    Kwok, James Tin-Yau
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2009, 17 (07): : 1372 - 1381
  • [25] Penalized empirical likelihood for the sparse Cox regression model
    Wang, Dongliang
    Wu, Tong Tong
    Zhao, Yichuan
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2019, 201 : 71 - 85
  • [26] Penalized Whittle likelihood for spatial data
    Chen, Kun
    Chan, Ngai Hang
    Yau, Chun Yip
    Hu, Jie
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 195
  • [27] Penalized likelihood regression: general formulation and efficient approximation
    Gu, C
    Kim, YJ
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2002, 30 (04): : 619 - 628
  • [28] Penalized likelihood and Bayesian function selection in regression models
    Scheipl, Fabian
    Kneib, Thomas
    Fahrmeir, Ludwig
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2013, 97 (04) : 349 - 385
  • [29] Penalized binary regression for gene expression profiling
    Schimek, MG
    [J]. METHODS OF INFORMATION IN MEDICINE, 2004, 43 (05) : 439 - 444
  • [30] A non-iterative optimization method for smoothness in penalized spline regression
    Hirokazu Yanagihara
    [J]. Statistics and Computing, 2012, 22 : 527 - 544