A tight lower bound for the hardness of clutters

被引:0
|
作者
Vahan Mkrtchyan
Hovhannes Sargsyan
机构
[1] Yerevan State University,Department of Informatics and Applied Mathematics
来源
关键词
Clutter; Hardness; Independent set; Maximal independent set; Primary 05C69; Secondary 05C70; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
A clutter (or antichain or Sperner family) L is a pair (V, E), where V is a finite set and E is a family of subsets of V none of which is a subset of another. Normally, the elements of V are called vertices of L, and the elements of E are called edges of L. A subset se\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_e$$\end{document} of an edge e of a clutter is recognizing for e, if se\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_e$$\end{document} is not a subset of another edge. The hardness of an edge e of a clutter is the ratio of the size of e's\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\text {'s}$$\end{document} smallest recognizing subset to the size of e. The hardness of a clutter is the maximum hardness of its edges. In this short note we prove a lower bound for the hardness of an arbitrary clutter. Our bound is asymptotically best-possible in a sense that there is an infinite sequence of clutters attaining our bound.
引用
收藏
页码:21 / 25
页数:4
相关论文
共 50 条
  • [41] A tight lower bound for Szemer,di's regularity lemma
    Fox, Jacob
    Lovasz, Laszlo Miklos
    COMBINATORICA, 2017, 37 (05) : 911 - 951
  • [42] A TIGHT LOWER-BOUND FOR THE STEINER RATIO IN MINKOWSKI PLANES
    GAO, B
    DU, DZ
    GRAHAM, RL
    DISCRETE MATHEMATICS, 1995, 142 (1-3) : 49 - 63
  • [43] A tight lower bound for the capture time of the Cops and Robbers game
    Brandt, Sebastian
    Emek, Yuval
    Uitto, Jara
    Wattenhofer, Roger
    THEORETICAL COMPUTER SCIENCE, 2020, 839 (143-163) : 143 - 163
  • [44] A tight lower bound for Vertex Planarization on graphs of bounded treewidth
    Pilipczuk, Marcin
    DISCRETE APPLIED MATHEMATICS, 2017, 231 : 211 - 216
  • [45] A TIGHT LOWER BOUND FOR SELECTION IN SORTED X+Y
    COSNARD, M
    FERREIRA, AG
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 497 : 134 - 138
  • [46] A TIGHT LOWER BOUND FOR THE COMPLEXITY OF PATH-PLANNING FOR A DISK
    ODUNLAING, C
    INFORMATION PROCESSING LETTERS, 1988, 28 (04) : 165 - 170
  • [47] A tight lower bound for art gallery sensor location algorithms
    Bottino, Andrea
    Laurentini, Aldo
    Rosano, Luisa
    ETFA 2007: 12TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION, VOLS 1-3, 2007, : 434 - +
  • [48] When is Shannon's lower bound tight at finite blocklength?
    Kostina, Victoria
    2016 54TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2016, : 982 - 989
  • [49] A Tight Lower Bound for Comparison-Based Quantile Summaries
    Cormode, Graham
    Vesely, Pavel
    PODS'20: PROCEEDINGS OF THE 39TH ACM SIGMOD-SIGACT-SIGAI SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, 2020, : 81 - 93
  • [50] A tight lower bound on the classical communication cost of entanglement dilution
    Harrow, AW
    Lo, HK
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 429 - 429